sh
micromamba create -n yapc_env -c conda-forge -c bioconda -c nodefaults yapc "numpy<1.24"
micromamba run -n yapc_env yapc -h
micromamba run -n yapc_env yapc atac \
wt Share/tracks/ATAC_rep1.bw Share/tracks/ATAC_rep2.bwWe will process two datasets from the Koszul lab, generated in 2024 and published in Science.
A set of ATAC-seq peaks identified with yapc.
Two ATAC-seq bam files used to generate tracks and call peaks.
A set of regulatory elements identified across development, aging and tissues of C. elegans, available here.
yapc package to see how to annotate peaks with yapc.bw files.sh
micromamba create -n yapc_env -c conda-forge -c bioconda -c nodefaults yapc "numpy<1.24"
micromamba run -n yapc_env yapc -h
micromamba run -n yapc_env yapc atac \
wt Share/tracks/ATAC_rep1.bw Share/tracks/ATAC_rep2.bwIGV the peak sets generated with different p-value thresholds.*d2smooth.bw track. Can you understand how the peaks are identified?rtacklayer package to see how to import a bed file in R.Rsamtools package to see how to create a connection to disk-stored bam files.GenomicAlignments package documentation to see how to import fragments from a BamFile connection.bam column to recover is isize (insert size).R
library(GenomicAlignments)
library(purrr)
param <- ScanBamParam(
flag=scanBamFlag(
isPaired = TRUE,
isProperPair = TRUE,
isDuplicate = FALSE,
isSecondaryAlignment = FALSE
),
mapqFilter = 20,
what = c("isize")
)
atac_frags <- map(atac_bam, readGAlignmentPairs, param = param)
atac_fragsGRanges with the as function.peaks.:::. {.callout-answer .icon .callout-note collapse=true}
R
mnase_bam <- BamFile('Share/mapping/MNase_20_filtered_sorted.bam')
mnase_frags <- readGAlignmentPairs(mnase_bam, param = param)
mnase_frags <- as(mnase_frags, "GRanges")
df_mnase <- as_tibble(mnase_frags) |>
group_by(width) |>
tally()
df2 <- rbind(
df |> mutate(type = 'ATAC-seq'),
df_mnase |> mutate(type = 'MNase-seq')
)
ggplot(df2, aes(x = width, y = n, color = type)) +
geom_line() +
xlim(c(0, 600)) +
theme_bw():::