Compute a scalogram of contacts
scalogram(x, dist_min = 0, nbins = 250, probs = c(0.25, 0.5, 0.75))
a tibble
a tibble
contacts_yeast <- HiCExperiment::contacts_yeast()
#> see ?HiContactsData and browseVignettes('HiContactsData') for documentation
#> loading from cache
pairsFile(contacts_yeast) <- HiContactsData::HiContactsData(
'yeast_wt', format = 'pairs.gz'
)
#> see ?HiContactsData and browseVignettes('HiContactsData') for documentation
#> loading from cache
scalo <- scalogram(contacts_yeast['II'])
#> Importing pairs file /github/home/.cache/R/ExperimentHub/1bea16b12b37_7753 in memory. This may take a while...
scalo
#> # A tibble: 750 × 4
#> # Groups: chr, binned_pos [250]
#> chr binned_pos prob dist_quantile
#> <chr> <dbl> <fct> <dbl>
#> 1 II 1 0.25 11094.
#> 2 II 1 0.5 26303
#> 3 II 1 0.75 59908.
#> 4 II 3254. 0.25 9491
#> 5 II 3254. 0.5 23273
#> 6 II 3254. 0.75 47260
#> 7 II 6506. 0.25 3548.
#> 8 II 6506. 0.5 13478.
#> 9 II 6506. 0.75 39133
#> 10 II 9759. 0.25 3110
#> # ℹ 740 more rows