A CoverageExperiment object can be coerced into a tibble using the
tidySummarizedExperiment package, but this will not turn
each coverage matrix into a "long" format. The expand function
provided here allows one to coerce a CoverageExperiment
object into a long data frame, and adds the ranges
and seqnames to the resulting tibble.
Arguments
- data
A data frame.
- ...
<
data-masking> Specification of columns to expand or complete. Columns can be atomic vectors or lists.To find all unique combinations of
x,yandz, including those not present in the data, supply each variable as a separate argument:expand(df, x, y, z)orcomplete(df, x, y, z).To find only the combinations that occur in the data, use
nesting:expand(df, nesting(x, y, z)).You can combine the two forms. For example,
expand(df, nesting(school_id, student_id), date)would produce a row for each present school-student combination for all possible dates.
When used with factors,
expand()andcomplete()use the full set of levels, not just those that appear in the data. If you want to use only the values seen in the data, useforcats::fct_drop().When used with continuous variables, you may need to fill in values that do not appear in the data: to do so use expressions like
year = 2010:2020oryear = full_seq(year,1).- .name_repair
One of
"check_unique","unique","universal","minimal","unique_quiet", or"universal_quiet". Seevec_as_names()for the meaning of these options.
Grouped data frames
With grouped data frames created by dplyr::group_by(), expand() operates
within each group. Because of this, you cannot expand on a grouping column.
See also
complete() to expand list objects. expand_grid()
to input vectors rather than a data frame.
Examples
data(ce)
ce
#> class: CoverageExperiment
#> dim: 1 2
#> metadata(0):
#> assays(1): coverage
#> rownames(1): Scc1
#> rowData names(2): features n
#> colnames(2): RNA_fwd RNA_rev
#> colData names(1): track
#> width: 3000
expand(ce)
#> # A tibble: 368,400 × 8
#> # Groups: track, features, ranges [1,228]
#> track features chr ranges strand coord coverage coord.scaled
#> <chr> <fct> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 RNA_fwd Scc1 II II:4290-7289:+ + 4290 -0.257 -1500
#> 2 RNA_fwd Scc1 II II:4290-7289:+ + 4300 -0.257 -1490
#> 3 RNA_fwd Scc1 II II:4290-7289:+ + 4310 -0.257 -1480
#> 4 RNA_fwd Scc1 II II:4290-7289:+ + 4320 -0.257 -1470
#> 5 RNA_fwd Scc1 II II:4290-7289:+ + 4330 -0.257 -1460
#> 6 RNA_fwd Scc1 II II:4290-7289:+ + 4340 -0.257 -1450
#> 7 RNA_fwd Scc1 II II:4290-7289:+ + 4350 -0.257 -1440
#> 8 RNA_fwd Scc1 II II:4290-7289:+ + 4360 -0.257 -1430
#> 9 RNA_fwd Scc1 II II:4290-7289:+ + 4370 -0.257 -1420
#> 10 RNA_fwd Scc1 II II:4290-7289:+ + 4380 -0.257 -1410
#> # ℹ 368,390 more rows