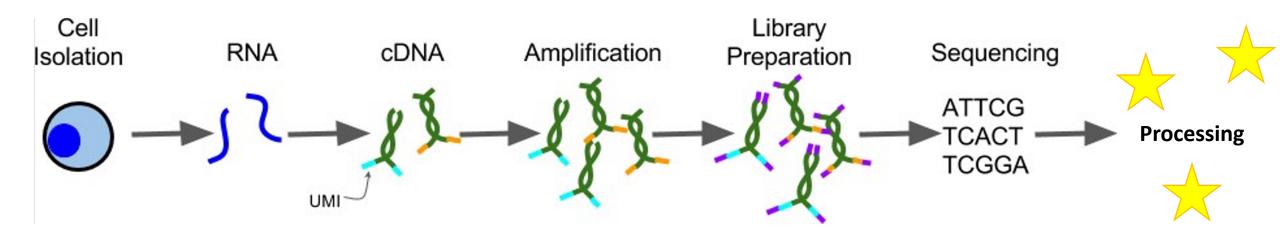
Lecture 2

Intro to Data processing: From bcl to count matrix


Physalia course 2025

Single-cell RNA-seq with R/Bioconductor

Instructors: Orr Ashenberg, Jacques Serizay, Fabrício Almeida-Silva

Experimental pipeline

Regardless of who is going to do the experimental steps, **DISCUSS WITH THEM !!!**

Experimental design is crucial for the success of a single-cell project !!!

Systematic comparison of single-cell and single-nucleus RNA-sequencing methods, Ding et al., Nat. Biotech. 2020

Get bcl file	bcl files – result of sequencing
Create fastq files	fastq files – R1, R2 and I files showing raw reads
QC: assess overall quality	
QC: remove low quality reads	
Align fastq to BAM	bam file – reads aligned to a reference genome
QC: collapse UMI	
View alignment	
Count matrix	count matrix – cell by gene, showing expression of gene in cell

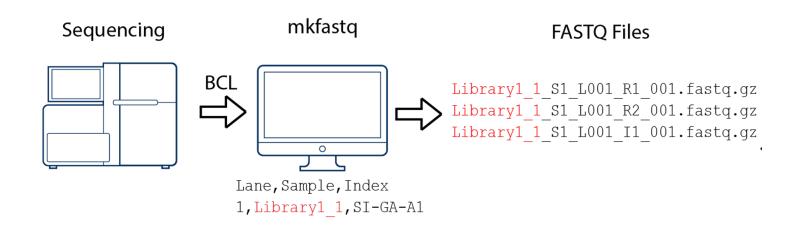
- Get bcl file
- Create fastq files
- QC: assess overall quality
- QC: remove low quality reads
- Align fastq to BAM
- QC: collapse UMI
- View alignment
- Count matrix

.bcl files

.bcl:

- Raw data output of a sequencing run
- Binary, non-human-readable file
- Contains the **base calling** and **quality score per cluster per sequencing lane**

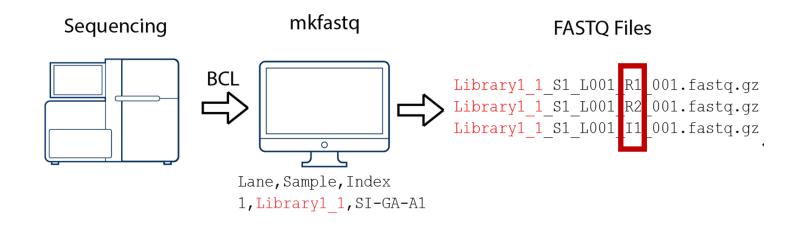
Get bcl file


That is the role of the sequencing machine!

- Create fastq files
- QC: assess overall quality
- QC: remove low quality reads
- Align fastq to BAM
- QC: collapse UMI
- View alignment
- Count matrix

Command:

bcl2fastq --run-folder-dir <bcl_files_folder> -p 12 --output-dir <fastq_files_folder>


User guide:

https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq_letterbooklet_15038058brpmi.pdf

Command:

bcl2fastq --run-folder-dir <bcl_files_folder> -p 12 --output-dir <fastq_files_folder>

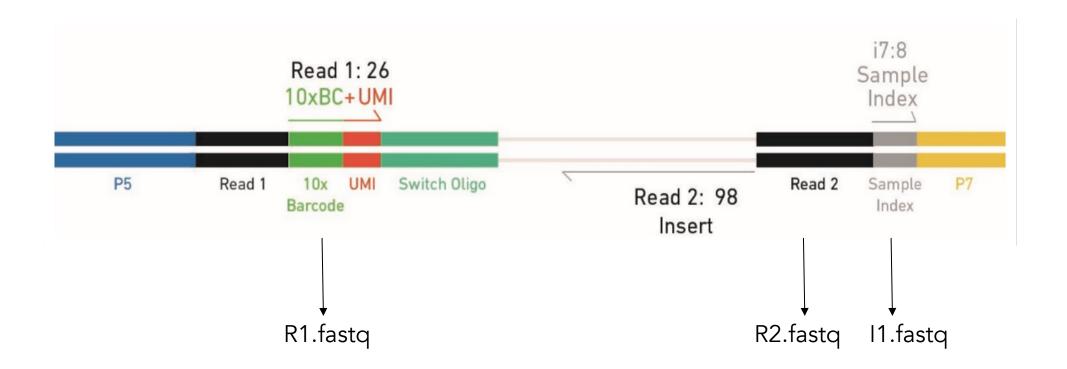
User guide:

https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/bcl2fastq/bcl2fastq_letterbooklet_15038058brpmi.pdf

How is a .fastq organized?

Each fastq file contains reads, each read is composed of 4 lines:

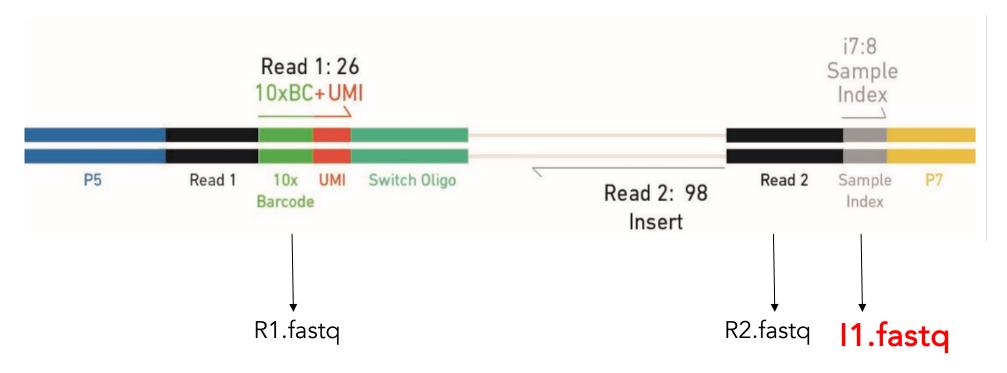
- 1. A sequence identifier with information about the sequencing run
- 2. The sequence (the base calls; A, C, T, G and N).


.OCAL[12:46:19]:~ \$ cat SRR11575369_1.fastq.qz | zcat |

- 3. A separator, which is simply a plus (+) sign.
- 4. The base call quality scores, using ASCII characters to represent the numerical quality scores.

Why do we end up with so many fastq files?

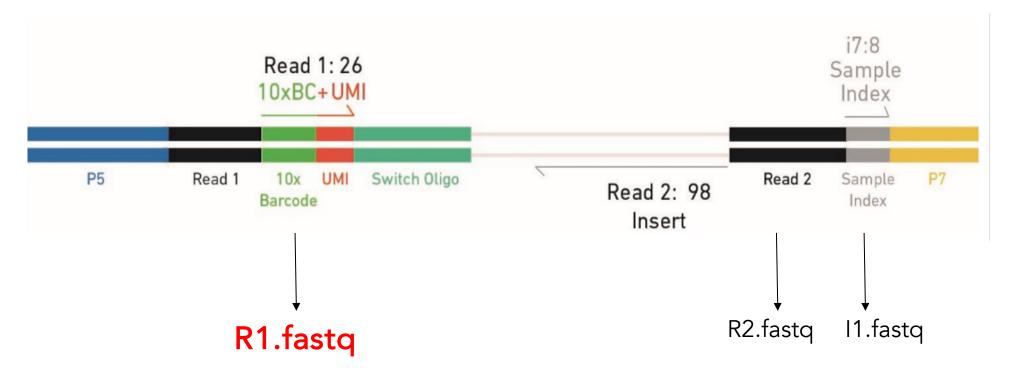
We sequence the paired ends of each DNA fragment molecule, in 3 different sequencing "runs".



I1 is important for demultiplexing multiple samples simultaneously sequenced

Each fastq generated by **bcl2fastq** contains a different information:

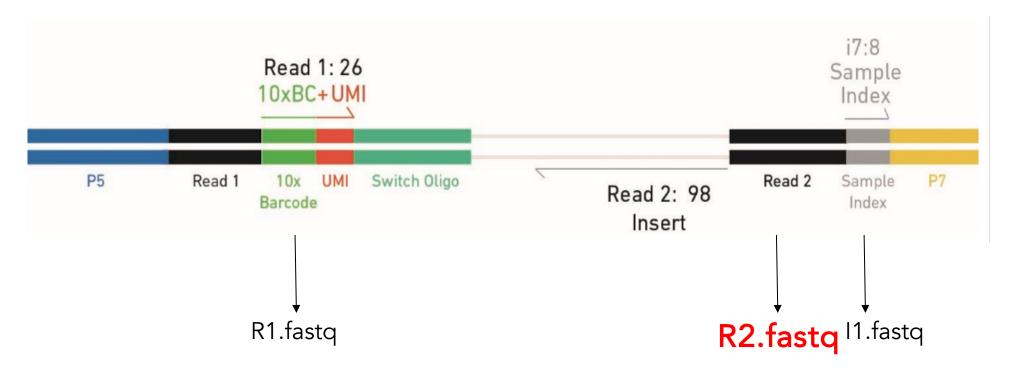
- I1.fastq contains sample index
- R1.fastq contains cell barcode + UMI
- R2.fatsq contains transcript information



R1 contains information on the cell of origin (as well as a UMI)

Each fastq generated by **bcl2fastq** contains a different information:

- I1.fastq contains sample index
- R1.fastq contains cell barcode + UMI
- R2.fatsq contains transcript information



R2 contains sequence of the DNA fragment captured by sequencing

Each fastq generated by **bcl2fastq** contains a different information:

- I1.fastq contains sample index
- R1.fastq contains cell barcode + UMI
- R2.fatsq contains transcript information

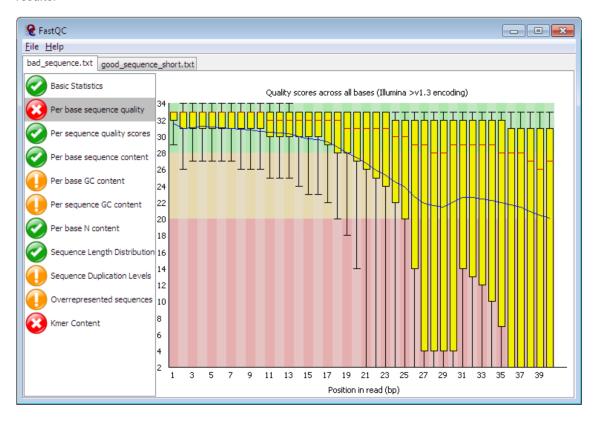
Reconstructing actual molecules loaded in the sequencer

After demultiplexing (thanks to the I1 file), here is what you have:

Cell barcode UMI	cDNA (50-bp sequenced
	oz i i i (co sp coquenicou
AAATTATGACGATGTGCTTG	GACTGCAC
CGTTAGATGGCAGGGCCGGG	CTCATAGT
GACCTACGAGTTAGTTTGTA	
GTTAAACGTACCCTAGCTGT	
ACGTCACCTTTTGTGGGGGT	ATAAGCTC
TTGCCGTGGTGTTATGGAGG	
AGTCCATGTGCGGCAGGTTT	GTTGGCGT
AAATTATGACGAAGTTTGTA	AGATGGGG
CCAAAGATGTCCTCTAGGCT	
GTTAAACGTACCAAGGCTTG	CAAAGTTC
TTTTTGACCAGTCGTGAGGG	TTCCAAGG
ACTGTCCATGCCCCTGTGTA	TGGTACGT
CGTAAAACAATAATCCGGTG	TTAAACCG

•	Get bcl file
•	Create fastq files
	QC: assess overall quality
	QC: remove low quality reads
	Align fastq to BAM
	QC: collapse UMI
	View alignment
	Count matrix

That is the role of the sequencing machine!


bcl2fastq

Raw sequencing QC is typically done with Fastqc

FastQC

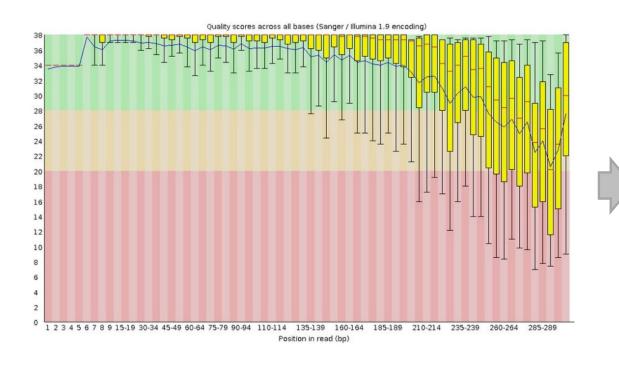
FastQC is a program designed to spot potential problems in high throughput sequencing datasets. It runs a set of analyses on one or more raw sequence files in fastq or bam format and produces a report which summarises the results.

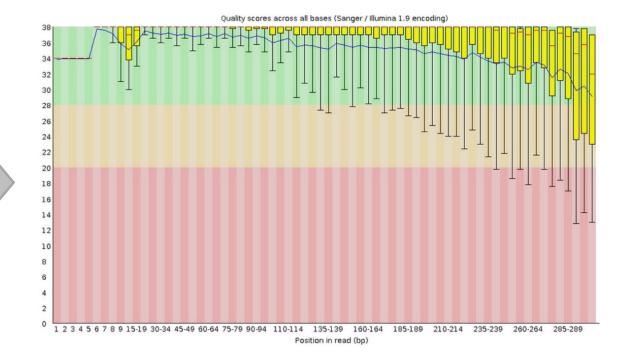
FastQC will highlight any areas where this library looks unusual and where you should take a closer look. The program is not tied to any specific type of sequencing technique and can be used to look at libraries coming from a large number of different experiment types (Genomic Sequencing, ChIP-Seq, RNA-Seq, BS-Seq etc etc).

	•	Get bcl file	That is the role of the sequencing machine!
	•	Create fastq files	bcl2fastq
	•	QC: assess overall quality	fastqc
		QC: remove low quality reads	
er		Align fastq to BAM	
Cellranger		QC: collapse UMI	
Ŭ		View alignment	
		Count matrix	

Filtering low quality reads

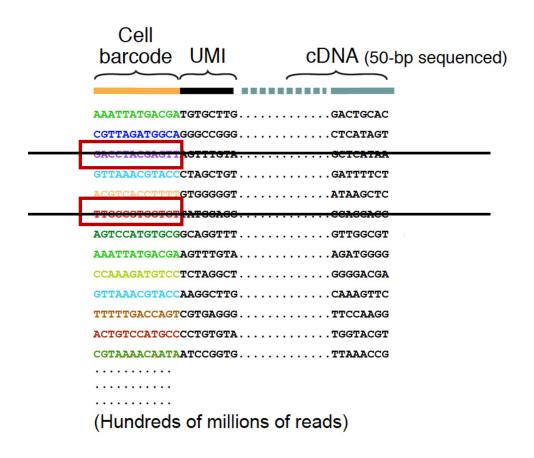
It is important to consider (and remove!):


- Reads with overall low quality
 Unrecognized cell barcode


Filtering low quality reads

It is important to consider (and remove!):

- 1. Reads with overall low quality
- 2. Unrecognized cell barcode



Filtering low quality reads

It is important to consider (and remove!):

- 1. Reads with overall low quality
- 2. Unrecognized cell barcode

What is a barcode whitelist?

List of all known barcode sequences that have been included in the assay kit and are available during library preparation.

For example, there are roughly 737,000 cell barcodes in the whitelist for Cell Ranger's Single Cell 3' applications. Here are the first 10 lines of the corresponding barcode whitelist 737K-august-2016.txt:

AAACCTGAGAAACCAT

AAACCTGAGAAACCGC

AAACCTGAGAAACCTA

AAACCTGAGAAACGAG

AAACCTGAGAAACGCC

AAACCTGAGAAAGTGG

AAACCTGAGAACAACT

AAACCTGAGAACAATC

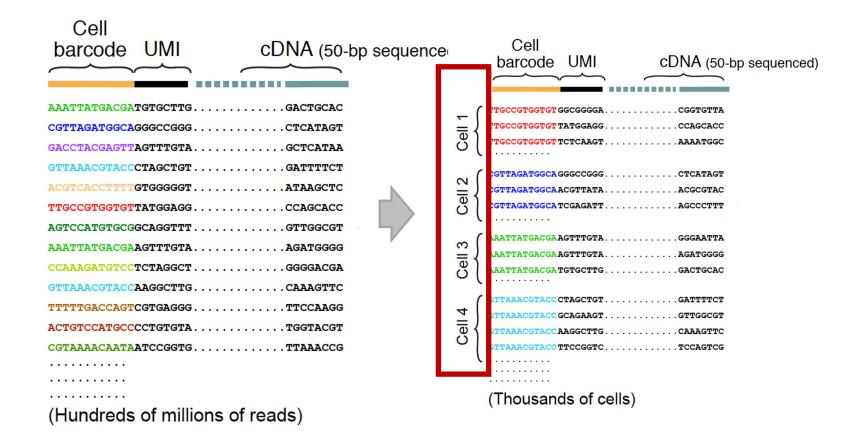
AAACCTGAGAACTCGG

AAACCTGAGAACTGTA

How to correct barcode sequencing errors?

For every observed barcode in the dataset not on the whitelist, but 1-Hamming-distance away (i.e. 1 mismatch) from a whitelist barcode:

- Compute the posterior probability that the observed barcode originated from the whitelist barcode with a sequencing error at the differing base (based on the base Q score).
- Replace the observed barcode with the whitelist barcode with the highest posterior probability that exceeds 0.975.



	•	Get bcl file	That is the role of the sequencing machine!
	•	Create fastq files	bcl2fastq
	•	QC: assess overall quality	fastqc
	•	QC: remove low quality reads	Automatic in most aligners
er		Align fastq to BAM	
Cellranger		QC: collapse UMI	
Ů		View alignment	
		Count matrix	

Aligning reads to a transcriptome reference

1. Group reads by cell-of-origin (using the cell barcodes)

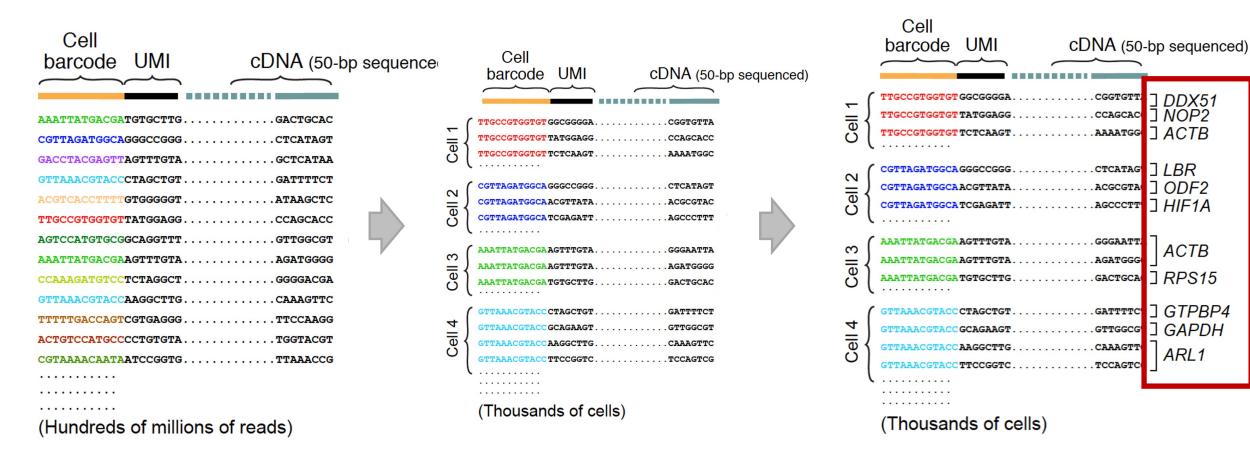
Aligning reads to a transcriptome reference

DDX51

 $\exists LBR$

] *HIF1A*

ACTB


] RPS15

∃ GTPBP4

ARL1

GAPDH

- Group reads by cell-of-origin (using the cell barcodes)
- 2. Recover which transcript the cDNA sequence aligns to

What do I need to align my reads?

Most aligners (included STAR-based cellranger) will map scRNAseq reads on a transcriptome index.

A transcriptome index consists of:

1. A <u>genome sequence</u> reference

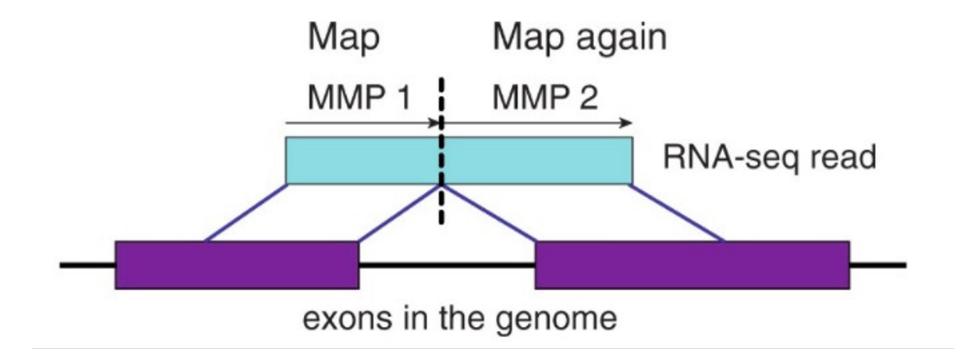
FASTA example

>gi|568336023|gb|CM000663.2| Homo sapiens chromosome 1, GRCh38 reference primary assembly CCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAACCCAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT CTAACCCTAACCCTAACCCTAACCCTAAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCT CAACCCCAACCCCAACCCCAACCCCAACCCCTAACCCCTAACCCTAACCCTAACCCTACCCTAAC CCTAACCCTAACCCTAACCCTAACCCTAACCCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC TCTGACCTGAGGAGAACTGTGCTCCGCCTTCAGAGTACCACCGAAATCTGTGCAGAGGACAACGCAGCTC CGCCCTCGCGGTGCTCTCCGGGTCTGTGCTGAGGAGAACGCAACTCCGCCGTTGCAAAGGCGCGCCGCGC GCCGCGCCGCGCAGGCGCAGAGACACATGCTACCGCGTCCAGGGGTGGAGGCGTGGCGCAGGCGCAGAG AGGCGCACCGCGCGCGCAGGGCGCAGAGACACATGCTAGCGCGTCCAGGGGTGGAGGCGTGGCGCAGGC GCAGAGACGCAAGCCTACGGGCGGGGTTTGGGGGGGGCGTGTGTTGCAGGAGCAAAGTCGCACGGCGCCGG GCTTGCTCACGGTGCTGTGCCAGGGCGCCCCCTGCTGGCGACTAGGGCAACTGCAGGGCTCTCTTGCTTA GAGTGGTGGCCAGCGCCCCTGCTGGCGCCCGGGGCACTGCAGGGCCCTCTTGCTTACTGTATAGTGGTGG

What do I need to align my reads?

Most aligners (included STAR-based cellranger) will map scRNAseq reads on a transcriptome index.

A transcriptome index consists of:


- 1. A **genome sequence** reference
- 2. A gene feature annotation reference

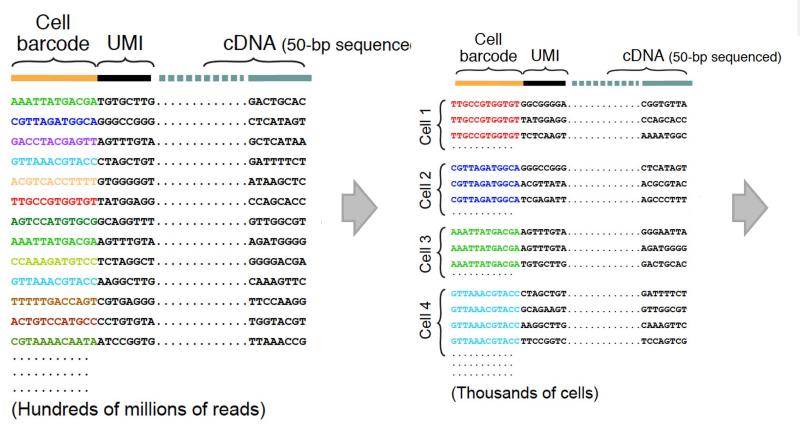
GTF example

Seqname	Source	Feature	Start	End	Sco	reStra	ndFrame	eAttributes
YHet	protein_coding	exon	311	424		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numb
YHet	protein_coding	CDS	311	424		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	540	799		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	540	799		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	857	1196		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	857	1196		+	1	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	1254	1519		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	1254	1519		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	1576	1729		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	1576	1729		+	1	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	1816	2154		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	1816	2154		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	2212	2324		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	2212	2324		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numb
YHet	protein_coding	exon	2376	2667		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	2376	2667		+	1	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	2726	2879		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numb
YHet	protein_coding	CDS	2726	2879		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbo
YHet	protein_coding	exon	15564	15931		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numb
YHet	protein_coding	CDS	15564	15931		+	2	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbo
YHet	protein_coding	exon	16461	16907		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numb
YHet	protein_coding	CDS	16461	16907		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	16954	19761		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	16954	19761		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	30303	30469		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	30303	30469		+	0	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	30522	31622		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	30522	31622		+	1	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	exon	33215	33413		+		gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	CDS	33215	33410		+	1	gene_id "FBgn0001315"; transcript_id "FBtr0113891"; exon_numbe
YHet	protein_coding	stop_codon	33411	33413		+	0	gene id "FBgn0001315"; transcript id "FBtr0113891"; exon numb

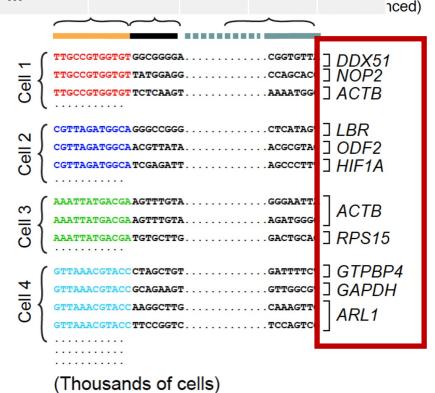
STAR is a traditional aligner that works by trying to find the longest possible sequence which matches one or more sequences in the reference genome.

STAR aligner

STAR is a traditional aligner that works by trying to find the longest possible sequence which matches one or more sequences in the reference genome.

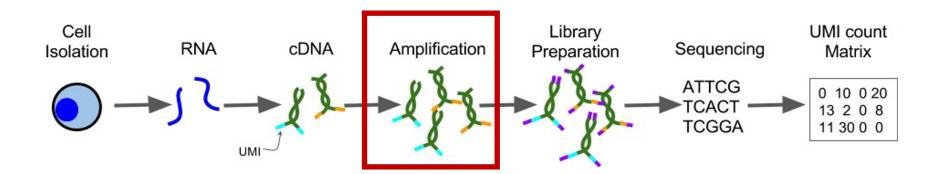

- Advantages: STAR is a splice aware aligner, making it suitable if you are interested in studying alternative splicing.
- Disadvantage: STAR requires a lot of RAM.

An alternative requiring less RAM is HISAT2.


Aligning reads to a transcriptome reference

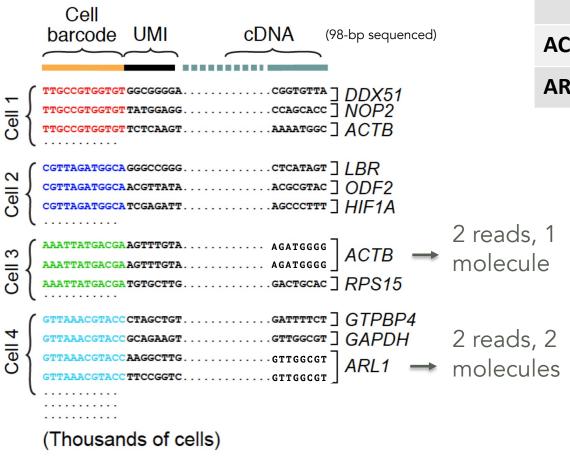
- 1. Group reads by cell-of-origin (using the cell barcodes)
- 2. Recover which transcript the cDNA sequence aligns to

	Cell1	Cell2	Cell3	Cell4
ACTB	1	0	2	0
ARL1	0	0	0	2
•••				1



	•	Get bcl file	That is the role of the sequencing machine!
	•	Create fastq files	bcl2fastq
	•	QC: assess overall quality	fastqc
	•	QC: remove low quality reads	Automatic in most aligners
7	•	Align fastq to BAM	STAR / Kallisto / Bowtie /
Cellranger		QC: collapse UMI	
ŭ		View alignment	
		Count matrix	

PCR duplicates


- PCR amplifications is an issue for both bulk and scRNAseq.
- During the PCR amplification process, some transcripts become over represented in the final library compared to their true abundance.
- The problem worsened when a high number of PCR cycles are used to generate the sequencing library, for example in scRNAseq due to the low amount of starting material.

Solution: using UMIs

UMIs enable sequencing reads to be assigned to <u>individual transcript molecules</u> and then the removal of amplification noise and biases from scRNAseq data.

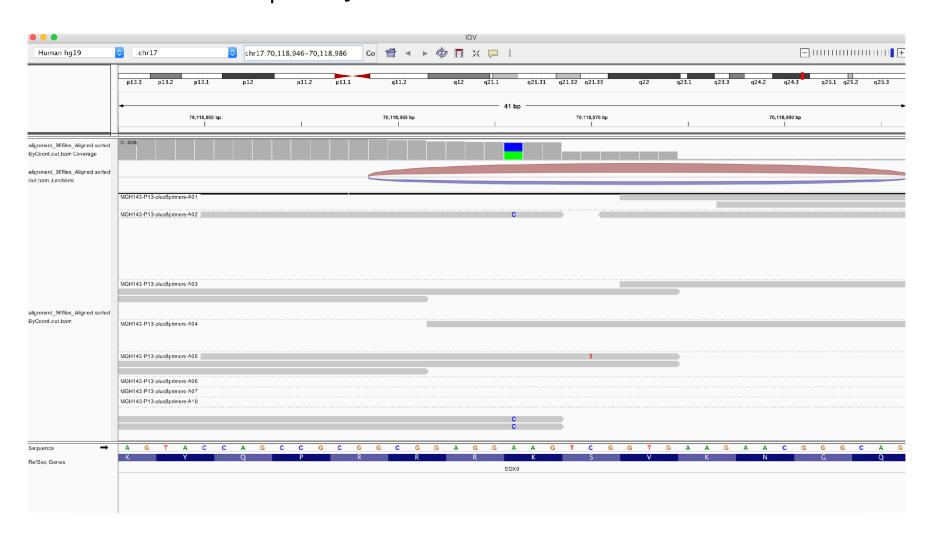
	Cell1	Cell2	Cell3	Cell4
ACTB	1	0	1	0
ARL1	0	0	0	2

Columns: cells

Rows: features

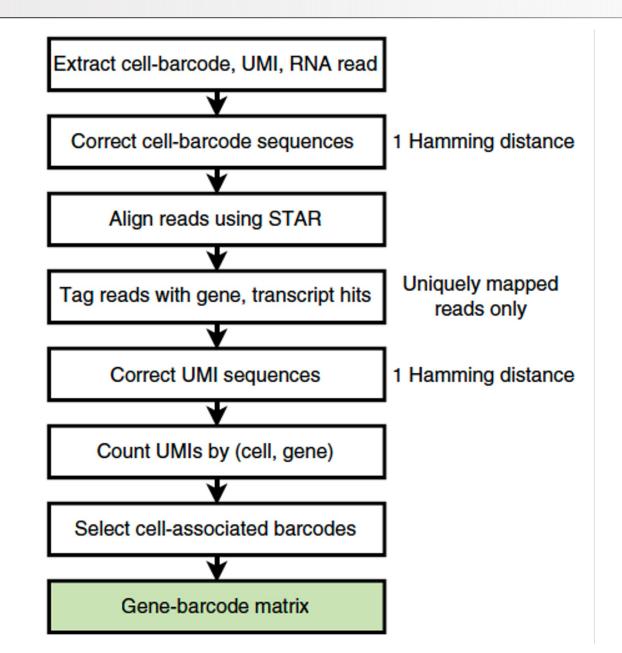
Solution: using UMIs

"Error-correcting" almost-correct UMIs:


A UMI that is 1-Hamming-distance away from another UMI (with more reads) for the same cell barcode and gene is corrected to the UMI with more reads.

	•	Get bcl file	That is the role of the sequencing machine!
	•	Create fastq files	bcl2fastq
	•	QC: assess overall quality	fastqc
	•	QC: remove low quality reads	Automatic in most aligners
T U	•	Align fastq to BAM	STAR / Kallisto / Bowtie /
Cellranger	•	QC: collapse UMI	Automatic in most aligners
Ö		View alignment	
		Count matrix	

Point mutation, splice junction, ...



	•	Get bcl file	That is the role of the sequencing machine!
	•	Create fastq files	bcl2fastq
	•	QC: assess overall quality	fastqc
	•	QC: remove low quality reads	Automatic in most aligners
_	•	Align fastq to BAM	STAR / Kallisto / Bowtie /
Cellranger	•	QC: collapse UMI	Automatic in most aligners
Ö	•	View alignment	Automatic in most aligners
		Count matrix	

Cellranger count pipeline

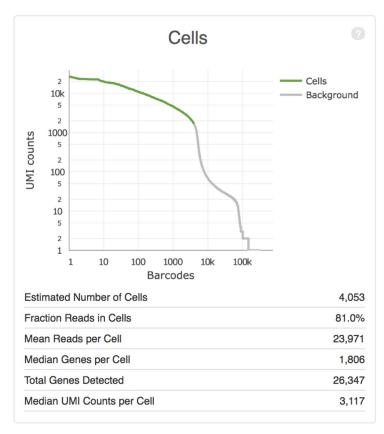
Which reads are considered for UMI counting by Cell Ranger?

- 1. Only reads with a valid UMI and a valid 10x barcode.
- 2. No bases with base quality < 10.
- 3. Read maps to exactly one gene.
- 4. Overlaps an exon by at least 50% in a way consistent with annotated splice junctions and strand annotation.
- 5. Multiple reads that map to the same UMI will only count once.

Cellranger output

Estimated Number of Cells 4,053

Mean Reads per Cell

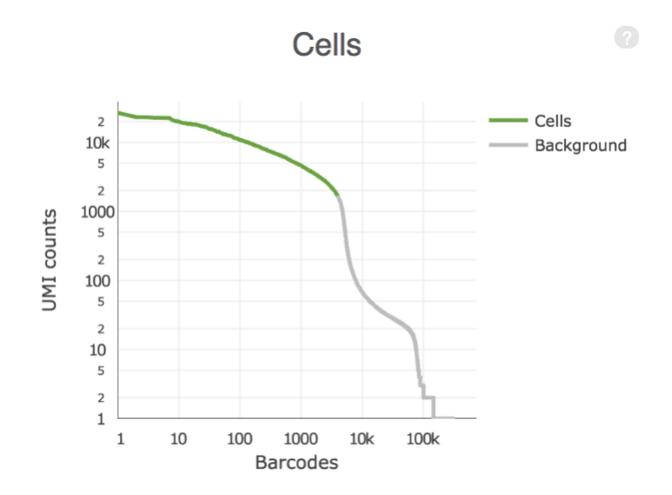

Median Genes per Cell

23,971

1,806

Sequencing	
Number of Reads	97,156,575
Valid Barcodes	94.5%
Sequencing Saturation	49.1%
Q30 Bases in Barcode	97.1%
Q30 Bases in RNA Read	93.2%
Q30 Bases in Sample Index	96.1%
Q30 Bases in UMI	97.0%

Mapping	
Reads Mapped to Genome	96.1%
Reads Mapped Confidently to Genome	93.0%
Reads Mapped Confidently to Intergenic Regions	9.3%
Reads Mapped Confidently to Intronic Regions	0.0%
Reads Mapped Confidently to Exonic Regions	83.7%
Reads Mapped Confidently to Transcriptome	42.1%
Reads Mapped Antisense to Gene	38.4%



Sam	ple
Name	results
Description	
Transcriptome	GRCh38_premrna
Chemistry Single Cel	
Cell Ranger Version	2.2.0

Cellranger output

Some cell barcodes have many UMIs, but most do not.

How deeply do I need to sequence?

- At high sequencing depth, we can detect:
 - The expression of rare splice variants.
 - Quantitative modulations in transcript abundance.

- Lower sequencing depth can still be very powerful :
 - Catalog of cell types.
 - Catalog of transcriptional programs.

	•	Get bcl file	That is the role of the sequencing machine!
	•	Create fastq files	bcl2fastq
	•	QC: assess overall quality	fastqc
Cellranger	•	QC: remove low quality reads	Automatic in most aligners
	•	Align fastq to BAM	STAR / Kallisto / Bowtie /
	•	QC: collapse UMI	Automatic in most aligners
	•	View alignment	Automatic in most aligners
	•	Count matrix	Cellranger

Any question?

