Analysis of Single Cell RNA-Seq Data:
Data integration and batch effect correction
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Outline: Batch effects and data integration

* Types of data integration.
e \Where batch effects come from.

e Computational approaches to correct for batch effects and
integrate data.

e Making biological comparisons after data integration.



Data integration
Shared features across different batches of cells

Horizontal integration (features as anchors)
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Argelaguet R. et al. (2022) Nature Methods.



Data integration
Different features measured from same cells

Cells Vertical integration (cells as anchors)
 —
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Argelaguet R. et al. (2022) Nature Methods.



Data integration
Different cell batches and features in each experiment

Cells Diagonal integration (no anchors)
—>

e

Features

Efremova M. et al. (2020) Nature Methods. 17:11-20.



Why perform data integration and batch effect correction?

We often require large cohorts of individuals (n > 10) to make biological
comparisons (case vs control, mutant vs wildtype etc...).

* As an example, how do smoking status and age contribute to SARS-CoV-2
entry-related genes in lung cells?

Sex Smoking status

Female | Male Never smoked |  Smoked

Basal
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1,320,896 cells from 228 individuals
Challenges

 Technical batch effects confound biological variation of interest (e.g. site and
time of collection, experimental protocol used...)

 Different sources of biological variation confound biological variation of
interest (e.g. cell cycle, treatment status...)

Muus C. et al. (2021) Nature Medicine.

[J No indication



Distinguishing biological effects from technical, batch effects
is a difficult problem
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Correcting for batch effects allows us to
combine datasets and boost biological signal,
while reducing technical confounders



The most powerful way to control batch effects is with careful
experimental design
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Sound experimental design : Replication, Randomization and Blocking
- R. A. Fisher, 1935

https://scrnaseg-course.cog.sanger.ac.uk/website/ideal-scrnaseg-pipeline-as-of-oct-2017.html



Batch effects: technical sources

e Differences in how samples are

Miseq

sequenced
* sequencing depth and saturation

® sequencing instrument

Nextseq

~ 500M reads total

HiSeq 4000

4 billion reads



A few basic approaches to batch correction

* Down sampling of sequencing reads
* Normalization
* Using variable genes common to multiple samples
® Removing genes correlated with batch
® Regression of residuals with technical covariates
* batch id
e number of UMI per cell

* number of genes per cell
* % mitochondrial reads

* ComBat (developed for microarray experiments)



Benchmarking of data integration methods

Scalability

Method
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Batch correction and data modality integration

Batch effects often arise when patient
samples are analyzed together
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Batch correction and data modality integration

Seurat v3

LIGER (Linked Inference ot Genomic Experimental Relationships)

Conos (Clustering on Network of Samples), Harmony

scVI (deep learning approach)



Canonical Correlation Analysis (CCA)

e CCA finds the linear combinations of variables across two datasets that are

maximally correlated with one another.

*  The first pair of canonical variables maximizes the correlation across datasets.

*  The second pair of canonical variables maximizes the correlation subject to the

constraint of not being correlated with the first pair, and so on.

e QGoals of CCA

Similar to Principal Components
Analysis (PCA)

Dimensional reduction: explain
covariation between datasets with a
small number of linear combinations of

variables
https://www.mathworks.com
httos://aithub.com/mhaahiaghat/ccaFuse



Canonical Correlation Analysis (CCA)
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“Effectively, we treat the data sets as multiple
measurements of a gene—gene covariance structure, and
search for patterns that are common to the data sets.”
Butler, A, et al. Nature Biotechnology 36.5 (2018): 411.



t-SNE 2

Canonical Correlation Analysis (CCA)

Unaligned datasets
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Assessing the
performance of
batch correction

“For every cell, we
calculate how many of its
k nearest-neighbors
belong to the same data
set and average this over
all cells. If the data sets
are well-aligned, we
would expect that each
cells’ nearest neighbors
would be evenly shared
across all data sets.”

Butler, A, et al. Nature Biotechnology 36.5 (2018): 411.



Mutual Nearest Neighbors

"I a pair of cells from each batch is
contained in each other’s set of nearest
neighbors, those cells are considered
to be mutual nearest neighbors. We
interpret these pairs as containing cells
that belong to the same cell type or
state despite being generated in
different batches. Thus, any systematic
differences in expression level
between cells in MNN pairs should
represent the batch effect.”

Haghverdi, L, et al. Nature biotechnology 36.5 (2018): 421.
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Mutual Nearest Neighbors

4 pancreas datasets
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Haghverdi, L, et al

. Nature Biotechnology (2018).
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Stuart et al. Cell (2019).



t-SNE 2

Combining CCA and Mutual Nearest Neighbors (Seurat v3)

Human and mouse pancreas datasets

Unaligned datasets b Aligned datasets
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Stuart et al. Cell (2019).



Classifying nuclei from a single cell ATAC-seq experiment
using single cell RNA-seq data as a reference

Integrating data modalities
14,249 cells from scRNA-seq and 2,548 cells from scATAC-seq
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Stuart et al. Cell (2019).



Batch correction and data modality integration

“Our goal is to find a small
number of metagenes, each
defined as a positive linear
combination of the N genes.
We can then approximate the
gene expression pattern of
samples as positive linear
combinations of these
metagenes. Mathematically,
this corresponds to factoring
matrix A into two matrices with
positive entries, A ~ WH.”

Nonnegative Matrix Factorization (NMF)

N features (genes)

A (rank M) =

M observables
(samples)

W

K metagenes

metagene expression profile

H (rank k=2)

M samples

&1 iI IIHIK
| ~§ | metagenes

samples

A /

Class 1 Class 2

Brunet J. et al. (2004) PNAS..



Batch correction and data modality integration using LIGER
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Heterogeneous Integrative nonnegative matrix factorization
single cell datasets with dataset-specific factors
Welch, et al. Cell (2019).



Batch correction and data modality integration using LIGER

b

LIGER implements
non-negative
matrix factorization
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Welch, et al. Cell (2019).



Integrating blood cell datasets using LIGER

Higher alignment score =
better data integration

Seurat
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Welch, et al. Cell (2019).



Integrating blood cell datasets using LIGER

'Seurat

y o ::g . ' %’ .
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Ideally, divergent cell types should not cluster
together after batch correction.

Welch, et al. Cell (2019).



In situ spatial transcriptomic data in mouse frontal cortex

Intact tissue
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Using LIGER to integrate single-cell transcriptomic and

A in situsspatial transcriptomic data
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Welch, et al. Cell (2019).



Using LIGER to integrate single-cell transcriptomic and
single-cell DNA methylation data
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56,000 cells from scRNA-seq
3,000 cells from DNA methylation

"We reasoned that, because gene body
methylation is generally anticorrelated
with gene expression, reversing the
direction of the methylation signal would

allow joint analysis.”
Welch, et al. Cell (2019).



Batch correction and data modality integration using Conos

Conos (Clustering on Network of Samples)

Error-prone pair alignment All-to-all pair (joint) graph Joint graph
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Barkas N., et al. Nature Methods (2019).




Batch correction and data modality integration using Harmony

—

I

Dataset | Cell type
o0 >n ‘f / lterate until convergence \
a C /(/@ b C/US‘ fo C C/US ks d C/US y
OO e X oo
AR o g ® L N U 4
v W, S & A & AR
" S\ e ' TR
2 3 Clug, et 3 Clug, 2t 3 /0‘9’@, @' ° C/US’G%
> o o 4 ) Sl
e X
+ ﬁ o & P ./ + 4

Soft assign cells to
clusters, favoring mixed
dataset representation

Get cluster centroids
for each dataset

Move cells based on
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Get dataset correction
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Korsunksy I. et al. Nature Methods (2019).



Harmony integrates different datasets while
maintaining cell type differences

Before integration

After integration
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Korsunksy I. et al. Nature Methods (2019).



Batch correction with deep learning approaches

Autoencoders and variational autoencoders are popular frameworks
for embedding single cell genomics datasets.
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P
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— Network
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standard deviation
vector

http://kvfrans.com/variational-autoencoders-explained/



http://kvfrans.com/variational-autoencoders-explained/

Batch correction with deep learning approaches
single-cell variation inference

(scVI)
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Lopez R. et al. Nature Methods (2018).



Input

Task details Scib results

Speed

Output
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Methods to assess performance of batch correction

* Entropy of batch mixing

e kBET - k-nearest neighbor batch effect test

c d
Well normalised data Badly normalised data
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e cells of the same cell type are close together and far from other
cells of a different type

e Adjusted rand index

® do batch labels and cluster labels agree with one another?

¢ BIOlOglcal S|gn|flcance Luecken M. D. et al. (2022) Nature Methods.



Common assumptions during batch correction

* At least one cell population is found shared in both
datasets.

* The batch effect and the biological differences do not
overlap with one another (ie orthogonal).

* The magnitude and variation of the biological effect
you care about is greater than that of the batch effect.



Will batch correction remove biological differences in single
cell transcriptomic data? (ChatGPT response)

Batch correction in single-cell transcriptomics is designed to remove technical variations that arise due to
differences in the experimental procedures such as sample preparation, sequencing, and data analysis. The goal
of batch correction is to reduce technical noise in the data and allow biological differences between cells to be
better distinguished.

However, batch correction can potentially remove some biological differences in the data, particularly if the
biological differences are correlated with the batch effect. For example, if cells from different batches are
isolated from different tissues or at different stages of development, then the batch correction algorithm may
inadvertently adjust the expression levels of genes that are differentially expressed between these groups.

Therefore, it is important to carefully evaluate the results of batch correction and to consider the biological
context of the data. One approach is to compare the results of batch-corrected data with uncorrected data and
to ensure that the biological differences identified in the uncorrected data are still present after batch
correction. It is also important to choose an appropriate batch correction method that is suitable for the specific
experimental design and to use quality control metrics to ensure that the batch correction has not removed
important biological information.




Recent helpful articles on data integration methods

Argelaguet, Ricard, et al. "Computational principles and challenges in single-cell
data integration." Nature biotechnology (2021).
® Review

Luecken, Malte D., et al. "Benchmarking atlas-level data integration in single-cell
genomics." Nature methods (2022).
* Methods comparison

Tran, Hoa Thi Nhu, et al. "A benchmark of batch-effect correction methods for
single-cell RNA sequencing data." Genome biology (2020).
* Methods comparison



Once data is integrated, how do we
compare across biological conditions?

When detecting gene differentially expressed across different biological
conditions (e.g. case vs control, treated vs untreated, etc...), what is the
replicate? A single cell? A sample?

Treating a single cell as a replicate will lead to false discoveries. @
Strongly consider using pseudobulk models or mixed effect models
when comparing samples across conditions.

Crowell, Helena L., et al. "Muscat detects subpopulation-specific state

transitions from multi-sample multi-condition single-cell transcriptomics
data." Nature communications (2020).

BN L

Squair, Jordan W., et al. "Confronting false discoveries in single-cell differential | DIFFERENTIAL EXPRESSION 3“ YOU'RE NOT TREATING
expression." Nature communications (2021). L LD
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https://www.nxn.se/valent/2019/2/15/handling-confounded-samples-for-
differential-expression-in-scrna-seg-experiments
Remember: go back to normalized (non batch-corrected) gene P

expression values for DE analyses! Add covariates for your batches in Jpl A
the DE statistical model. Ad ¥ CELLS AS REPLICATES, RIGHT?.



https://www.nxn.se/valent/2019/2/15/handling-confounded-samples-for-differential-expression-in-scrna-seq-experiments
https://www.nxn.se/valent/2019/2/15/handling-confounded-samples-for-differential-expression-in-scrna-seq-experiments

Testing for significant changes in cell type abundance across
biological conditions

Assume we have 3 cell types (A, B, C) in a treated and untreated sample. If the frequency of cell type A

increases in the treated sample due to the treatment, what will happen to the frequencies of cell types B
and C?

The compositional nature of cell type abundance data means the abundances of cell type A, cell type B,
and cell type C are not independent of one other. Their frequencies must always sum to 1.

Condition

®A
oB

scCODA b Milo

HC(1)~% Pk~N01

T ~ LogitN(0, 50)

N(0,5) ~ ay
Covariates

Density of

condition B
High

@ log(¢i k) = ok + X Bk

Buttner et al., Nature Communications. (2021). @

Dann et al., Nature Biotech. (2022). Cell Type Counts 7y iLow



Integrating datasets and mapping to gene programs
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Lotfollahi M. et al., Nature Methods. (2023).

Kunes R. Z. et al., Nature Biotechnology. (2023).



