
Lecture 4

Identifying cell populations

Physalia course 2024
—

Single-cell RNA-seq with R/Bioconductor

Instructors: Orr Ashenberg, Jacques Serizay, Fabrício Almeida-Silva
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How Do We Define Cellular Identity?

A cell participates in multiple processes/contexts.
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Dimensional reduction in scRNAseq studies

High-dimensional data can be difficult to interpret. 

One approach to simplification is to assume that the data of interest lies within lower-dimensional 

space. If the data of interest is of low enough dimension, the data can be visualised in the low-

dimensional space.

- A scRNA seq starts with many measurements (features, genes).

- We want to reduce it to fewer informative dimensions.

- We have starting doing this by using only highly variable genes.

- We can further reduce dimension with linear or non-linear approaches.
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Dimensional reduction in scRNAseq studies

High-dimensional data can be difficult to interpret. 

One approach to simplification is to assume that the data of interest lies within lower-dimensional 

space. If the data of interest is of low enough dimension, the data can be visualised in the low-

dimensional space.

Common Techniques

- Principal Component Analysis (PCA)

- Independent Component Analysis (ICA)

- Multidimensional Scaling (MDS)

- Non-negative Matrix Factorization (NMF)

- Probabilistic Modeling (e.g. Latent Dirichlet Allocation - LDA) 
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Principal Component Analysis 

• PCA is a dimensionality reduction 

method that transforms a set of 

features into a set of linearly 

uncorrelated variables called 

principal components 

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Principal Component Analysis 

• PCA is a dimensionality reduction 

method that transforms a set of 

features into a set of linearly 

uncorrelated variables called 

principal components 

• The first principal component 

contains the most variance, and 

each component after contains as 

much variance while still being 

orthogonal to other components 

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Principal Component Analysis: assessing lower dimensions
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Principal Component Analysis: assessing lower dimensions
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Going further: non-linear dimensional reductions

In a t-SNE projection, similar objects (cells) are modeled by 

nearby two-(three)dimensional points and dissimilar objects are 

modeled by distant points with high probability.
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Caution with tSNE visualization

A great tSNE resource! https://distill.pub/2016/misread-tsne/ 

https://distill.pub/2016/misread-tsne/
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Caution with tSNE visualization

A great tSNE resource! https://distill.pub/2016/misread-tsne/ 

https://distill.pub/2016/misread-tsne/
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Other non-linear dimensional reduction approaches

● Force-directed graph embedding

● UMAP

● Diffusion Maps

● Non-negative Matrix Factorization

● Probabilistic (topic models/Latent Dirichlet Allocation (LDA))

BE AWARE!! 

- Some are linear, some other are not. 

- While PCA is a general “one-size-fits-all” approach, others will yield more specific outputs, 

targeting a particular question. 
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Other non-linear dimensional reduction approaches
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Different methodologies for clustering

Andrews et al., 2018
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”Traditional” clustering

Andrews et al., 2018
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”Traditional” clustering

https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
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”Traditional” clustering

K-means algorithm is both fast and generally reliable, as a first approach. 
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Graph-based clustering

Andrews et al., 2018
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Why do we need graph-based clustering?

Andrews et al., 2018

Curse of dimensionality: 

“All data become sparse in high-dimensional space and therefore similarities measured by Euclidean 

distances etc are generally low between all objects.”

There is no point performing a hierarchical clustering of 10,000 cells if 90% of the pairwise 

distances are null !!
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)

Two cells are connected by an edge if any of their nearest neighbors are shared.
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)

K is important when building KNN or SNN graphs !
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from ’00s). 
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from ’00s). 

Many different algorithms for community detection:

- Louvain (heuristic)

- Infomap

- Walktrap 

- …

Most of them are based on modularity maximization
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from ’00s). 

The Atlas for the Aspiring 
Network Scientist, 
Michele Coscia 2021
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Graph-based clustering

CAREFUL! 

A graph can be visualized (i.e. embedded) 

in 2D, but the graph-based clustering step 

(i.e. community finding) is not done on its 

2D embedding!!

“Do not let the tail (of visualization) wag the dog (of 

quantitative analysis)”

-- A. Lun
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Visualizing expression of a gene of interest

On the dataset embedding:
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Visualizing expression of a gene of interest

On the dataset embedding: By clusters:
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Visualizing expression of a module of interest

On the dataset embedding: By clusters:
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Differential Expression Testing

In scRNA-seq we often do not have a defined set of experimental conditions. 

Instead, we can perform pairwise comparisons of gene expression, between pairs of cell clusters, 

using some of the following tests: 

- "wilcox" : Wilcoxon rank sum test (default)

- t" : Student’s t-test 

- "poisson" : Likelihood ratio test assuming an underlying poisson distribution. Use only for UMI-based 

datasets

- "negbinom" : Likelihood ratio test assuming an underlying negative binomial distribution. Use only 

for UMI-based datasets

- Others…
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Differential Expression Testing

In scRNA-seq we often do not have a defined set of experimental conditions. 

Instead, we can perform pairwise comparisons of gene expression, between pairs of cell clusters, 

using some of the following tests: 

See Seurat::FindMarkers() and scran::findMarkers() for more info…

markers <- scran::findMarkers(

sce, 

groups = sce$cluster, 

test.type = ”t”

) 
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Differential Expression Testing

Think about your experimental design!!!
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Differential Expression Testing

Think about your experimental design!!!
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Differential Expression Testing

Think about your experimental design!!!
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markers <- scran::findMarkers(

sce, 

groups = sce$cluster, 

test.type = ”t”, 

block = <BLOCKING MATRIX>

) 
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Differential Expression Testing: many different assays… 

Soneson and Robinson, 2018

Again, different tests are available and depending on your study case, might be more/less appropriate. 

I would recommend going with t-test as default. 
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Cell type annotation using identified markers per cluster

Cell clusters
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Manual cell type annotation using identified markers per cluster

Top markers of cluster #7 in PBMCs: 

CD74

HLA-DRA

MS4A1

CD79A

HLA-DRB1

HLA-DPA1

CD79B

LTB

HLA-DQB1

TCL1A

CD52

HLA-DPB1

CD37
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Automated cell type annotation using public marker databases

Aran et al., Nat. Immuno. 2019

SingleR can rely on references of pure cell types to annotate individual cells within a scRNAseq dataset. 
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Automated cell type annotation using public marker databases

SingleR can rely on references of pure cell types to annotate individual cells within a scRNAseq dataset. 

However, it is limited in sensitivity, as it can only identify cells based on the references used. 
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Automated cell type annotation using public marker databases

Abdelaal et al., Genome Biol. 2019

Huge (and growing!) collection of tools for automated cell annotation… 
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Automated cell type annotation using public marker databases

Abdelaal et al., Genome Biol. 2019

Huge (and growing!) collection of tools for automated cell annotation… 
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