Lecture 4

Identifying cell populations

Physalia course 2024

Single-cell RNA-seq with R/Bioconductor

Instructors: Orr Ashenberg, Jacques Serizay, Fabricio Almeida-Silva



How Do We Define Cellular Identity?

A cell participates in multiple processes/contexts.

ITS CYTOKINES

@ Ve

Herold, K. C., & Bluestone, J. A. (2011). Type 1 diabetes immunotherapy: is the glass half empt
or half full?. Science translational medicine, 3(95), 95fs1-95fs1.
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Dimensional reduction in scRNAseq studies

High-dimensional data can be difficult to interpret.

One approach to simplification is to assume that the data of interest lies within lower-dimensional
space. If the data of interest is of low enough dimension, the data can be visualised in the low-
dimensional space.

- A scRNA seq starts with many measurements (features, genes).

- We want to reduce it to fewer informative dimensions.

- We have starting doing this by using only highly variable genes.

- We can further reduce dimension with linear or non-linear approaches.



Dimensional reduction in scRNAseq studies

High-dimensional data can be difficult to interpret.

One approach to simplification is to assume that the data of interest lies within lower-dimensional
space. If the data of interest is of low enough dimension, the data can be visualised in the low-
dimensional space.

Common Techniqgues

Principal Component Analysis (PCA)

- Independent Component Analysis (ICA)
- Multidimensional Scaling (MDS)

- Non-negative Matrix Factorization (NMF)

- Probabilistic Modeling (e.g. Latent Dirichlet Allocation - LDA)



Principal Component Analysis

- PCA s a dimensionality reduction
method that transforms a set of
features into a set of linearly
uncorrelated variables called
principal components

1,000s cells

1,000s cells

10,000 genes

(few) Principal components

https.//stats.stackexchange.com/questions/2691/making-se nse-of-principal-component-analysis-eigenvectors-eigenvalues 7



Principal Component Analysis

- PCA s a dimensionality reduction
method that transforms a set of

features into a set of linearly z |

uncorrelated variables called

principal components oL e
Ly |

II"
.

- The first principal component
contains the most variance, and
each component after contains as ‘
much variance while still being
orthogonal to other components

https.//stats.stackexchange.com/questions/2691/making-se nse-of-principal-component-analysis-eigenvectors-eigenvalues 8



Principal Component Analysis: assessing lower dimensions

Notice how lower PCs
look more and more

“spherical” - this loss of
structure indicates that
the variation captured by
these PCs mostly
reflects noise.




Principal Component Analysis: assessing lower dimensions
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Notice how lower PCs
look more and more
“spherical” - this loss of
structure indicates that
the variation captured by
these PCs mostly
reflects noise.
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Going further: non-linear dimensional reductions

In a t-SNE projection, similar objects (cells) are modeled by

nearby two-(three)dimensional points and dissimilar objects are

®NO G AWN =

modeled by distant points with high probability.

PCA 2 (13%)
o

1,000s cells

1,000s cells
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10,000 genes
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Caution with tSNE visualization

Nonlinear--optimized for local distance

Caveats to be aware of: o
Distances between clusters may not , *
mean anything—Ilarge distances do not ~

necessarily reflect large dissimilarity A e .a._l? T
fﬁ. ] -\ ‘; & *.

Cl

Big clusters can just mean more cells

Perplexity parameter or expected s

number of neighbors (default 30 in "ﬁ &
Seurat) can make it hard to find very .
rare subpopulations (5 cells or less). 2

Number of iterations run will also affect
final visualization

A great tSNE resource! https://distill. pub/2016/misread-tsne/
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https://distill.pub/2016/misread-tsne/

Caution with tSNE visualization
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A great tSNE resource! https://distill.pub/2016/misread-tsne/
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https://distill.pub/2016/misread-tsne/

Other non-linear dimensional reduction approaches

e Force-directed graph embedding
e UMAP

e Diffusion Maps

e Non-negative Matrix Factorization

e Probabilistic (topic models/Latent Dirichlet Allocation (LDA))

BE AWARE!!

- Some are linear, some other are not.

-  While PCA is a general “one-size-fits-all” approach, others will yield more specific outputs,
targeting a particular question.

14



Other non-linear dimensional reduction approaches

Research | Open Access | Published: 10 December 2019

Accuracy, robustness and scalability of dimensionality
reduction methods for single-cell RNA-seq analysis

Shiquan Sun, Jiagiang Zhu, Ying Ma & Xiang Zhou

Genome Biology 20, Article number: 269 (2019)
9331 Accesses | 27 Citations | 39 Altmetric
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Analysis workflow
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Clustering
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Different methodologies for clustering

Expression
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Andrews et al., 2018
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"Traditional” clustering

Expression
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Andrews et al., 2018
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"Traditional” clustering

MiniBatch
KMeans

Affinity Spectral Agglomerative Gaussian
Propagation MeanShift Clustering Clustering DBSCAN OPTICS Mixture

.12s

https.//scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods 1 9



"Traditional” clustering

K-means algorithm is both fast and generally reliable, as a first approach.

poe.

20



Graph-based clustering

Expression Feature Dimensionality Cell-cell K-nearest
matrix selection reduction distances neighbours
(n) cells (n) cells (n) cells (n) cells cell

(f) genes
(d) dimensions
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Andrews et al., 2018 2 1



Why do we need graph-based clustering?

Curse of dimensionality:

“All data become sparse in high-dimensional space and therefore similarities measured by Euclidean

distances etc are generally low between all objects.”

There is no point performing a hierarchical clustering of 10,000 cells if 90% of the pairwise

distances are null I

Andrews et al., 2018 22



Building a k-Nearest Neighbors graph (with k = 4)

Cell-cell
. distances

(n) cells

(n) cells
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)

. distances
(n) cells

(n) cells

Cell-cell ‘ ._:¥\3“

26



Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)

Cell-cell
distances

(n) cells

(n) cells
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)

Cell-cell ‘
distances ¢
(n) cells N \‘

(n) cells
@
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)

Two cells are connected by an edge if any of their nearest neighbors are shared.

I /
s “1\%‘\‘ “:

: .

(n) cells
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)

K is important when building KNN or SNN graphs !

o ®e x o ®
SAY® O ® o,
O ®e
0® o® .o}.
o¥e e °
® O @
® .. "‘
| N _ ') .. ‘
[ N ®0 980 O % O
O
O % O
X oz
(a) Parameter K = 2 (b) Parameter K = 3 (c) Parameter K = 6
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from '00s).

Cell-cell
.~ distances

(n) cells

(n) cells
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from '00s).

Many different algorithms for community detection:

. . a. OPTIMAL PARTITION b. SUBOPTIMAL PARTITION
- Louvain (heuristic) M=0.41 M=0.22
- Infomap
- Walktrap
c. SINGLE COMMUNITY d. NEGATIVE MODULARITY
M=0 M= -0.12

Most of them are based on modularity maximization

34



Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from '00s).

) S—
MICHELE COSCIA

SCIENTIST

d?sﬂ;T;L SN THE ATLAS FORTHE
() cells ~ ASPIRING NETWORK

2101.00863v2

(n) cells

arXiv:

The Atlas for the Aspiring
Network Scientist,
Michele Coscia 2021
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Graph-based clustering

CAREFUL!

A graph can be visualized (i.e. embedded)

In 2D, but the graph-based clustering step %1

(i.,e. community finding) is not done on its
2D embedding!!

force 2

“Do not let the tail (of visualization) wag the dog (of

quantitative analysis)”

87 1

-- A. Lun

84 1

-20 -10 0 10
force 1
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Visualizing expression of a gene of interest

On the dataset embedding:

Cdk1

OoO=NWAH
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Visualizing expression of a gene of interest

On the dataset embedding: By clusters:

Cdk1

OoO=NwWrO

Expression (logcounts)
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Visualizing expression of a module of interest

On the dataset embedding:

CellCycleGenes

0.8
0.6
0.4

By clusters:

1.01

0.5 JENEE.

CellCycleGenes
o
(o]

0.4 1
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Analysis workflow
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Differential Expression Testing

In sScCRNA-seq we often do not have a defined set of experimental conditions.

Instead, we can perform pairwise comparisons of gene expression, between pairs of cell clusters,

using some of the following tests:

"wilcox" : Wilcoxon rank sum test (default)

t" . Student’s t-test

"poisson” : Likelihood ratio test assuming an underlying poisson distribution. Use only for UMI-based
datasets

"negbinom" : Likelihood ratio test assuming an underlying negative binomial distribution. Use only
for UMI-based datasets

Others...

42



Differential Expression Testing

In sScCRNA-seq we often do not have a defined set of experimental conditions.

Instead, we can perform pairwise comparisons of gene expression, between pairs of cell clusters,

using some of the following tests:

See Seurat::FindMarkers() and scran::findMarkers() for more info...

markers <- scran::findMarkers (
sce,
groups = sceS$cluster,
test. type = “t”

)

43



Differential Expression Testing

Think about your experimental design!!!

2
?

Y LT
\ 4
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Differential Expression Testing

Think about your experimental design!!!

2
?

Not all the cells are the same: there
are confounding variables.

Y LT
\ 4
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Differential Expression Testing

Think about your experimental design!!!

2
?

2 2

1,000s cells

BLOCKING
MATRIX

Not all the cells are the same: there
are confounding variables.

markers <- scran::findMarkers (

sce,
groups = sceScluster,
test.type = “"t”,

block = <BLOCKING MATRIX>

46



Differential Expression Testing: many different assays...
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Again, different tests are available and depending on your study case, might be more/less appropriate.

| would recommend going with t-test as default.
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Figure 3 | Average similarities between gene rankings obtained by the evaluated DE methods. The dendrogram was obtained by complete-linkage
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Soneson and Robinson, 2018
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Analysis workflow
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Cell type annotation using identified markers per cluster
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Manual cell type annotation using identified markers per cluster

Top markers of cluster #7 in PBMCs:
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Automated cell type annotation using public marker databases

SingleR can rely on references of pure cell types to annotate individual cells within a sScRNAseq dataset.

Aran et al., Nat. Inmuno. 2019

Input:
[ Unannotated

scRNA-seq data

Step 1:
Identifying variable

genes among cell types
in the relerence set

Step 2.
Correlating each
single-cell transcriptome
with each sample in the
reference set

Heterence

transcriptomes of

pure cell types

Output:

Annotated
single cells

Stepd: lterative fine-tuning—reducing the
reference sat 1o only top cell types
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Automated cell type annotation using public marker databases
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204 2 - 204
[6) 3
4 o B-cells
N o 5 « CD4+ T-cells
Y 6 W o CD8+ T-cells
Z
c% 0 o 7 W 0 o DC
= g © HSC
o9 © Monocytes
10 NK cells
o 11
-20 - 12 -20 4
13
20 -10 0 10 20 30 20 -10 0 10 20 30
TSNE 1 TSNE 1

However, it is limited in sensitivity, as it can only identify cells based on the references used.

52



Automated cell type annotation using public marker databases

Huge (and growing!) collection of tools for automated cell annotation...

Abdelaal et al., Genome Biol. 2019

Name Version Language Underlying classifier Prior knowledge Rejection option
Garnett 0.1.4 R Generalized linear model Yes Yes
Moana 011 Python SVM with linear kernel Yes No
DigitalCellSorter GitHub version: e369a34 Python Voting based on cell type markers Yes No
SCINA 1.1.0 R Bimodal distribution fitting for marker genes Yes No
scVi 0.3.0 Python Neural network No No
Cell-BLAST 0.1.2 Python Cell-to-cell similarity No Yes
ACTINN GitHub version: 563bcc1 Python Neural network No No
LAmbDA GitHub version: 3891d72 Python Random forest No No
scmapcluster 1.51 R Nearest median classifier No Yes
scmapcell 1.5.1 R kNN No Yes
scPred 0.0.0.2000 R SVM with radial kernel No Yes
CHETAH 0.99.5 R Correlation to training set No Yes
CaSTLe GitHub version: 258b278 R Random forest No No
SingleR 0.2.2 R Correlation to training set No No
sclD 0.0.0.9000 R LDA No Yes
singleCellNet 0.1.0 R Random forest No No
LDA 0.19.2 Python LDA No No
NMC 0.19.2 Python NMC No No
RF 0.19.2 Python RF (50 trees) No No
SVM 0.19.2 Python SVM (linear kernel) No No
SVM(gjection 0.19.2 Python SVM (linear kernel) No Yes
kNN 0.19.2 Python kNN (k=9) No No

Physalia
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Automated cell type annotation using public marker databases

Huge (and growing!) collection of tools for automated cell annotation...

Pancreas CellBench TM  Allen Mouse Brain PBMC
SVMrgjection- 0.99 099 088 1 098 1 1 0.99 1 1 098 099 092
scPred- 1 098 088 1 085 1 1 0.97 1
SVM- 098 098 097 1 099 1 1 0.98 1
singleCellNet- 097 096 0987 099 1 1 1 0.94 1
ACTINN- 097 088 087 1 085 1 1 0.97 1
CaSTLe- 083 084 086 098 096 1 089 084 1
scmapcell- 0os8 o098 o097 1 [O#8 1 1 o0ss 1
LDA- 084 097 096 099 089 1 1 0.95 1
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