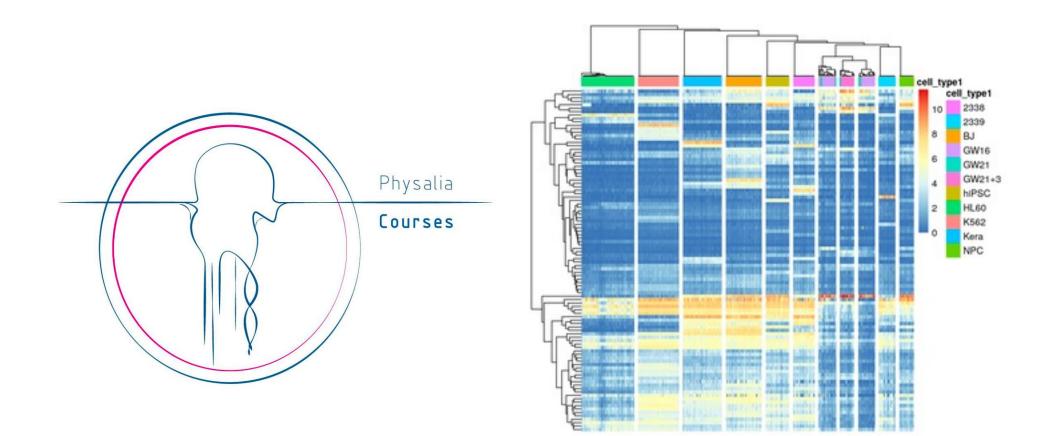
Quality control for scRNA-Seq data

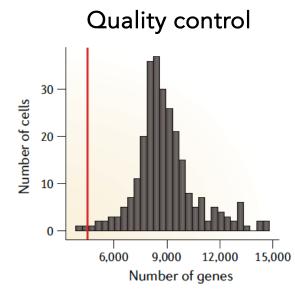
Orr Ashenberg, Jacques Serizay, Fabricio Almeida-Silva November 5, 2024



Outline: Quality control of scRNA-Seq data

- Quality control and normalization starting from gene count matrices.
- Interacting with Seurat objects.
- Next step will be dimensionality reduction, clustering, and visualization

Determining cell type, state, and function



Normalization

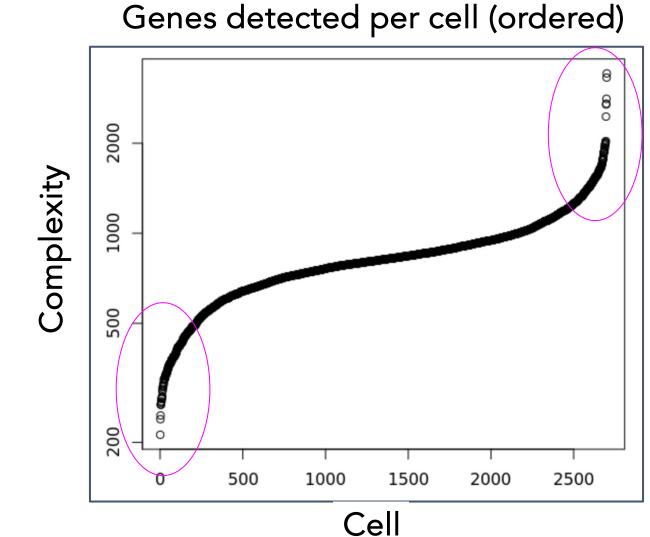
Feature selection

Dimensional reduction

Cell-cell distances

Unsupervised clustering

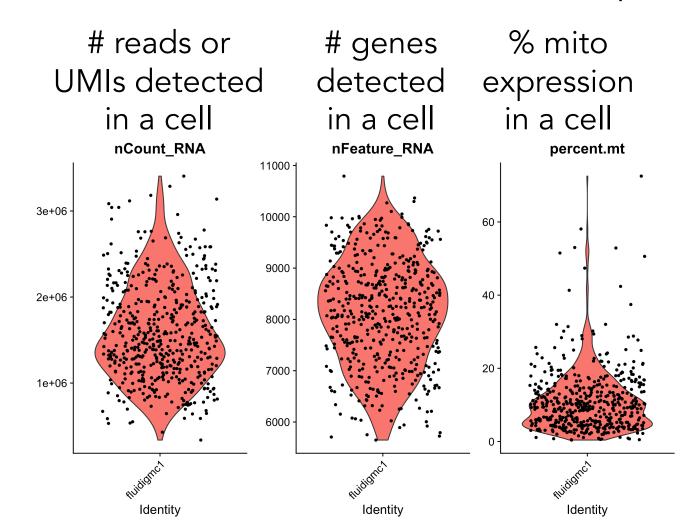
There are many quality control filters for genes and cells



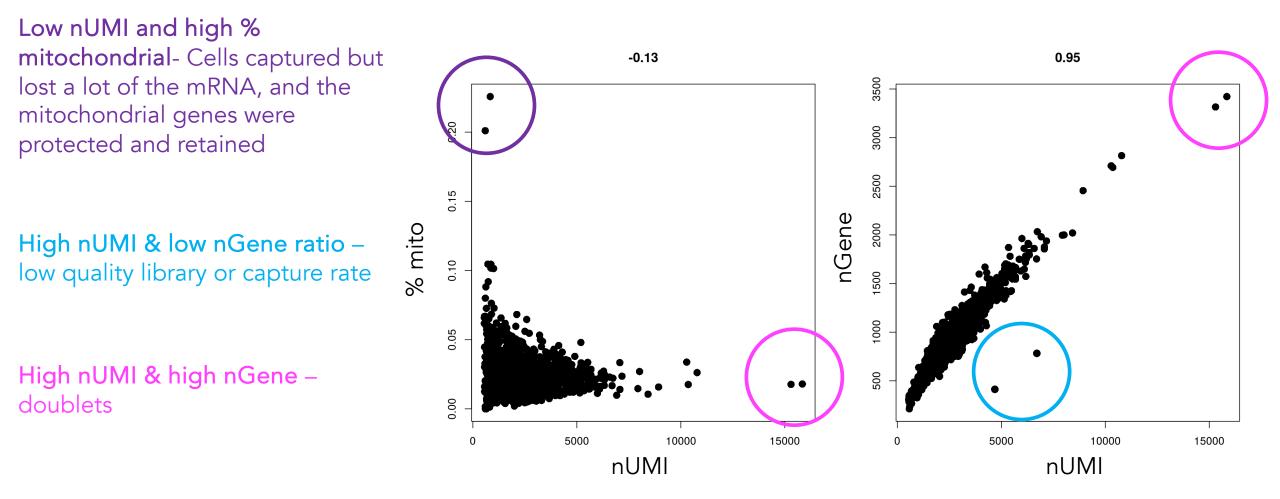
Complexity = Number of genes detected in a cell

There are many quality control filters for genes and cells

• We filter cells based on technical or biological parameters.



Filtering with combinations of quality control filters

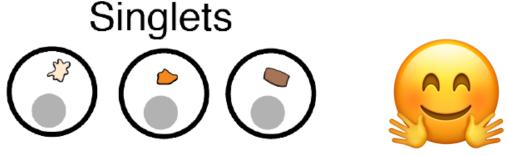


Appropriate quality control filters vary with platform and cell types

- Different platforms set different expectations
 - e.g. Smart-Seq2 often yields more genes detected per cell than 10x Chromium.
- Different cell types set different expectations
 - Immune cells normally have fewer genes detected per cell than non-immune cells
 - Malignant cells normally have more genes detected per cell than non-malignant cells

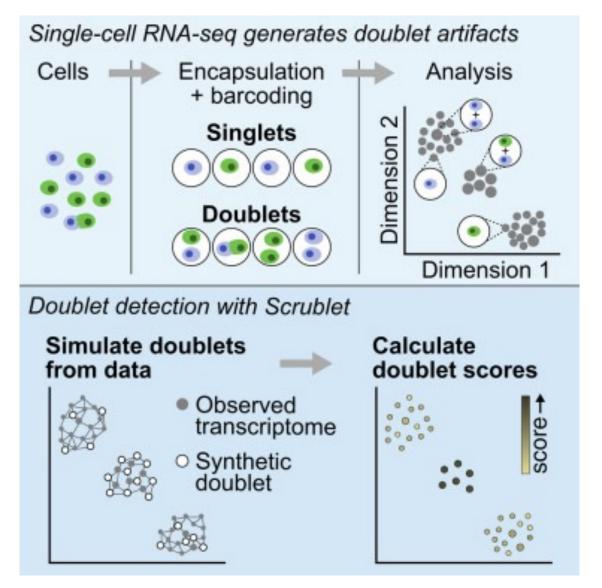
Detecting cell doublets with Scrublet

Scrublet (Single-Cell Remover of Doublets)



Wolock, Lopez, Klein. Cell Systems 8.4 (2019): 281-291.

Detecting cell doublets with Scrublet



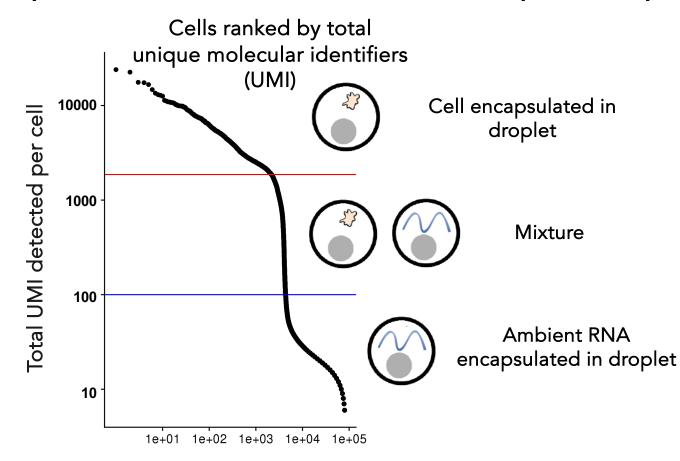
Detecting empty drops containing ambient RNA – manual

Look for transcripts expressed in unexpected cell types and remove those genes from all subsequent analysis

• e.g. hemoglobin gene expressed in a T cell

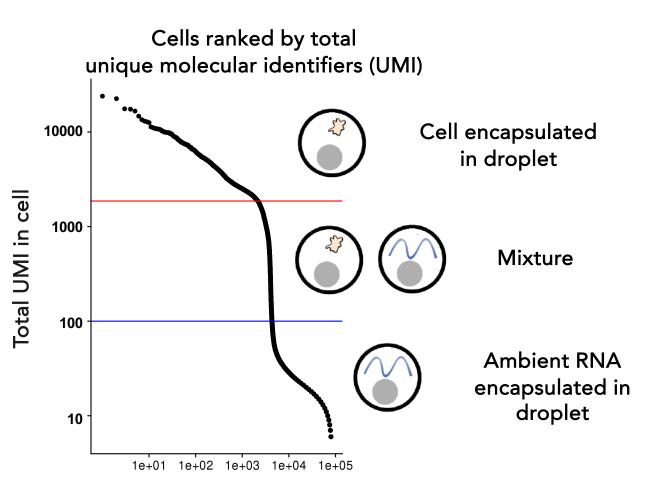
Detecting empty drops containing ambient RNA – automatic

EmptyDrops (distinguish cells from empty droplets)



Lun, A.T.L. et al. Genome Biol (2019). 20, 63.

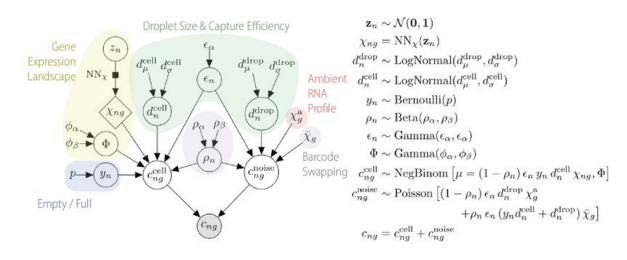
Further quality control to correct for ambient RNA



CellBender is a deep generative model of background-contaminated counts

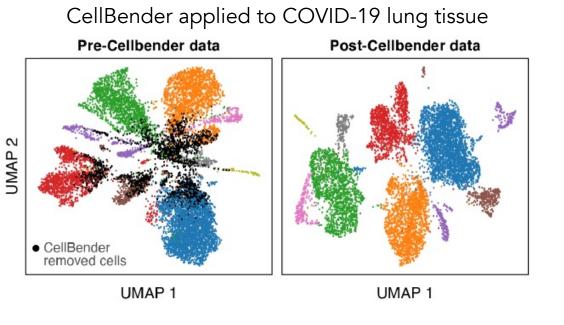
- correct ambient RNA and barcode swapping
- detect empty droplets

CellBender deep generative model



Fleming S. J. et al. Nature Methods (2023).

Removing ambient RNA using CellBender in COVID-19 tissue



Pre-CellBender data SFTPA1 S

CellBender qualitative observations

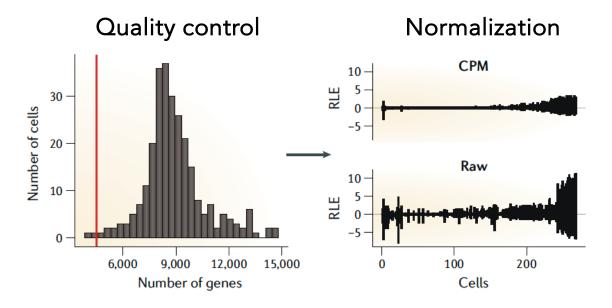
- cell subsets become more distinct
- cell type marker genes become more specific
- can lower UMI and gene cutoffs, allowing for significantly more recovery of lymphocytes

Delorey T. et al. Nature (2021).

Quality control tips

- We often revisit quality control decisions multiple times when analyzing data.
- Start with permissive thresholds when filtering, and investigate the effects of these thresholds before applying more stringent thresholds.
- If the distributions of QC metrics differ between samples, thresholds should be determined separately for each sample to account for sample quality differences.
- Visualize QC metrics per cell subset in order to flag technical biases.

Determining cell type, state, and function



Feature selection

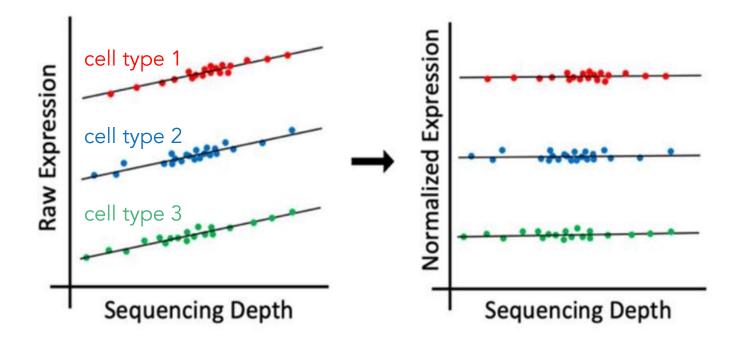
Dimensional reduction

Cell-cell distances

Unsupervised clustering

Single-cell RNA-Seq analysis: normalization

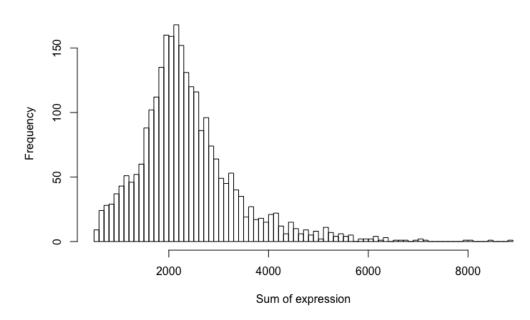
• Why normalize gene expression within a cell?



Differences in sequencing depth can lead to false differences in gene expression.

Single-cell RNA-Seq analysis: normalization

- Why normalize gene expression within a cell?
 - cells are sequenced to different depths (technical)
 - cells of different type have different amounts of mRNA (biological)
 - there are typically extreme values in distribution of gene expression
 - more highly expressed genes are more variable

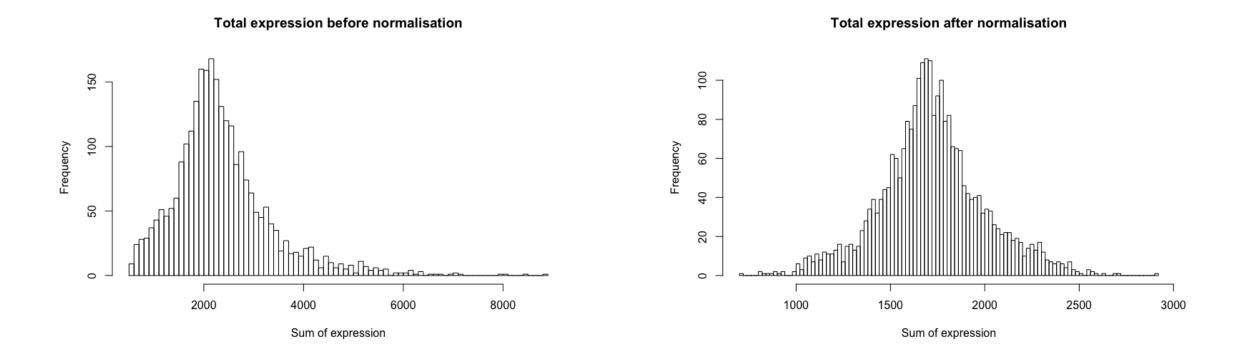


Total expression before normalisation

Single-cell RNA-Seq analysis: normalization

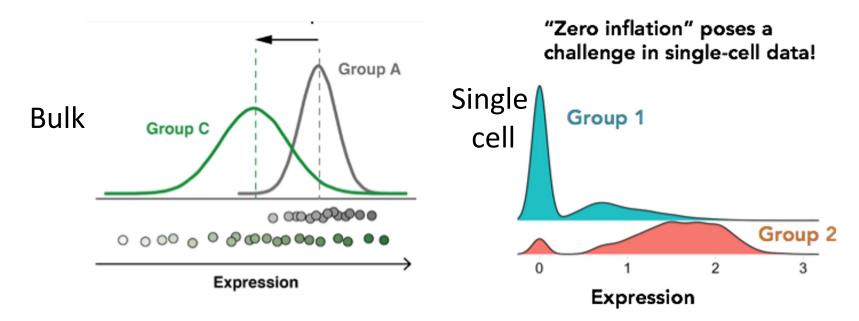
• How to normalize

- Gene expression measurements for each cell are normalized by the total gene expression or median gene expression
- Gene expression values then scaled to sum to 10,000 (typically), and then log(1+x)transformed.



Is standard normalization appropriate?

Reassessing the idea that droplet scRNA-Seq is zero-inflated.

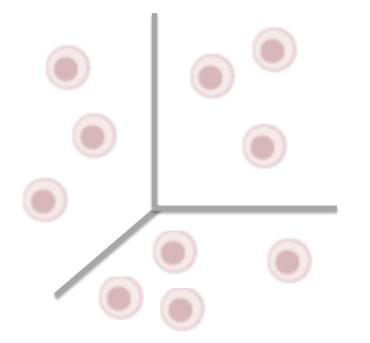


- "Droplet scRNA-seq is not zero-inflated." Svensson, *Nature Biotechnology* (2020)
- "Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model." Townes et al. Genome Biology (2019)
- "Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression." Hafemeister et al. *Genome Biology* (2019)
- "Statistics or biology: the zero-inflation controversy about scRNA-seq data." Jiang et al. Genome Biology (2022)

Identify highly variable genes

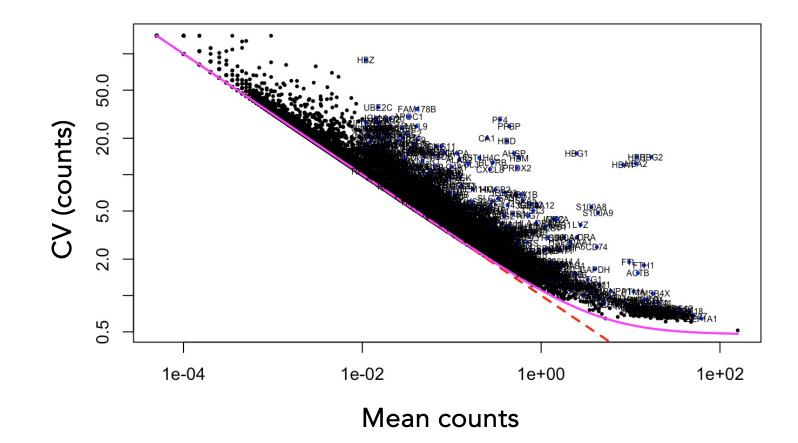
Cells are in ~20,000 dimensional space (one dimension for each gene)

• many genes are lowly detected or noisy measurements



• variable genes contain the biological signal we are interested in

Identify highly variable genes

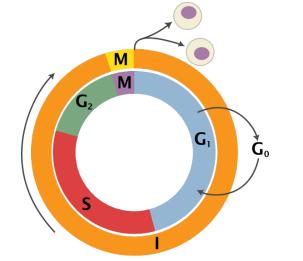


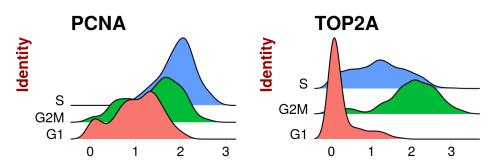
Find genes (features) that are outliers in a plot of mean of gene expression vs variance of gene expression

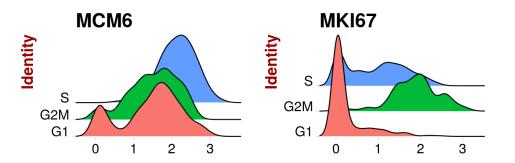
Calculating gene signatures

Relying on capturing a specific gene is not robust, but relying on a set of genes (signature) is much more stable!

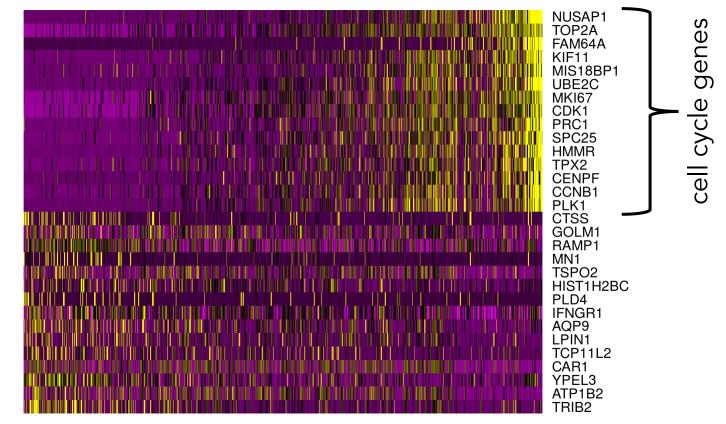
Gene signature example: cell cycle markers



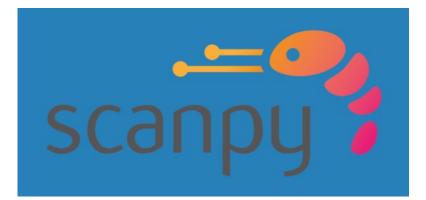




variability of individual genes



Seurat and scanpy: single cell analysis toolkits



https://satijalab.org/seurat/ https://scanpy.readthedocs.io/en/stable/

Interacting with Seurat objects

- Seurat object is used for to store 10x data and perform analysis
 - Count matrices for different assays are stored (gene expression, protein expression, chromatin accessibility, etc...)
 - Counts are stored as: counts (raw), data (normalized), scaled data (centered and scaled) in sparse matrices when possible
 - Metadata describes individual cells and genes
 - Functions for analysis (quality control, normalization, feature selection, dimensional reduction, cell-cell distances, unsupervised clustering)

https://github.com/satijalab/seurat/wiki https://satijalab.org/seurat/essential_commands.html

Interacting with Seurat objects

Seurat object

> gcdata

An object of class Seurat 35633 features across 2000 samples within 2 assays Active assay: RNA (33633 features) 1 other assay present: integrated 2 dimensional reductions calculated: pca, umap

> gcdata[['RNA']]@data[1:5,1:5]

5 x 5 sparse Matrix of class "dgCMatrix"

D2ex_5 D2ex_6 D2ex_7 D2ex_11 D2ex_13 A1BG-AS1

A1BG			•	
A1CF			•	
A2M-AS1	•	•	•	
A2ML1			•	1.226772

Accessing count slot from RNA assay

> gcdata[[]][1:5, 1:5]

	orig.ident	nCount_RNA	nFeature_RNA	tech	integrated_snn_res.1
D2ex_5	D2ex	5745.867	2548	celseq	4
D2ex_6	D2ex	6883.692	2619	celseq	6
D2ex_7	D2ex	7460.202	3043	celseq	5
D2ex_11	D2ex	8330.644	3465	celseq	5
D2ex_13	D2ex	3891.960	1962	celseq	6

Accessing cell metadata

> gcdata <- ScaleData(gcdata)
Centering and scaling data matrix</pre>

Running analysis function

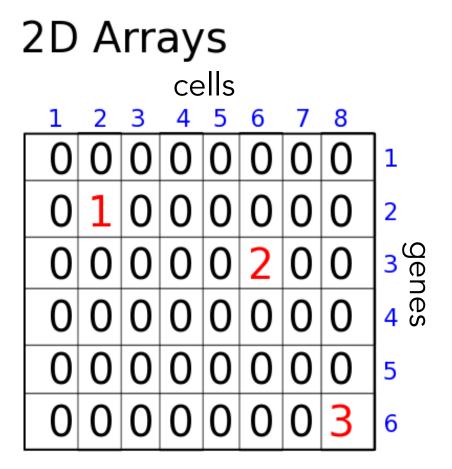
Loading data into a Seurat object

gcdata <- CreateSeuratObject(counts = celseq.data)</pre>

counts matrix

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	 Cell 70K
Tcf7	3	3	0	0	0	0	 4
Bach2	2	4	1	0	0	0	 2
Prf1	1	0	5	3	1	1	 1
Gzma	0	0	3	1	0	0	 0
Pdcd1	0	1	1	0	4	6	 0
Eomes	0	0	1	0	3	3	 1
Gene 20K	2	1	0	1	0	0	 3

Storing counts data in dense vs sparse format



Coordinate List

2	2	1
6	3	2
8	6	З

Dense matrices

Sparse matrices