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Quality control for scRNA-Seq data



• Quality control and normalization starting from gene 
count matrices.

• Interacting with Seurat objects.

• Next step will be dimensionality reduction, clustering, 
and visualization

Outline: Quality control of scRNA-Seq data



Kiselev C. at al. (2019) Nature Reviews Genetics. 20: 273-282.

Quality control Normalization Feature selection

Dimensional reduction Cell-cell distances Unsupervised clustering

Determining cell type, state, and function
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Complexity = 
Number of genes 
detected in a cell

There are many quality control filters for genes and cells



• We filter cells based on technical or biological parameters.

There are many quality control filters for genes and cells

# genes 
detected 
in a cell

# reads or 
UMIs detected 

in a cell

% mito 
expression 

in a cell



Low nUMI and high % 
mitochondrial- Cells captured but 
lost a lot of the mRNA, and the 
mitochondrial genes were 
protected and retained

High nUMI & high nGene – 
doublets

High nUMI & low nGene ratio – 
low quality library or capture rate

Filtering with combinations of quality control filters
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• Different platforms set different expectations
• e.g. Smart-Seq2 often yields more genes detected per cell 

than 10x Chromium.

• Different cell types set different expectations
• Immune cells normally have fewer genes detected per cell 

than non-immune cells
• Malignant cells normally have more genes detected per cell 

than non-malignant cells

Appropriate quality control filters vary with platform and 
cell types



Scrublet (Single-Cell Remover of Doublets)

Detecting cell doublets with Scrublet

Wolock, Lopez, Klein. Cell Systems 8.4 (2019): 281-291.



Wolock, Lopez, Klein. Cell Systems 8.4 (2019): 281-291.

Detecting cell doublets with Scrublet



Look for transcripts expressed in unexpected cell 
types and remove those genes from all subsequent 
analysis
• e.g. hemoglobin gene expressed in a T cell

Detecting empty drops containing ambient RNA – manual



Cells ranked by total 
unique molecular identifiers 
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Lun, A.T.L. et al. Genome Biol (2019). 20, 63.

EmptyDrops (distinguish cells from empty droplets)

Detecting empty drops containing ambient RNA – automatic



Cells ranked by total 
unique molecular identifiers (UMI)
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Further quality control to correct for ambient RNA

CellBender is a deep generative model 
of background-contaminated counts
• correct ambient RNA and barcode swapping

• detect empty droplets

Fleming S. J. et al. Nature Methods (2023).



Removing ambient RNA using CellBender in COVID-19 tissue

CellBender qualitative observations
- cell subsets become more distinct
- cell type marker genes become more specific
- can lower UMI and gene cutoffs, allowing for 

significantly more recovery of lymphocytes

Delorey T. et al. Nature (2021).

CellBender applied to COVID-19 lung tissue



Quality control tips

Luecken M. D. et al. Molecular Systems Biology (2019) 15:e8746.

• We often revisit quality control decisions multiple times when analyzing data. 

• Start with permissive thresholds when filtering, and investigate the effects of 
these thresholds before applying more stringent thresholds.

• If the distributions of QC metrics differ between samples, thresholds should 
be determined separately for each sample to account for sample quality 
differences.

• Visualize QC metrics per cell subset in order to flag technical biases.



Kiselev C. at al. (2019) Nature Reviews Genetics. 20: 273-282.
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Determining cell type, state, and function



• Why normalize gene expression within a cell? 

Single-cell RNA-Seq analysis: normalization

cell type 1

cell type 2

cell type 3

Differences in sequencing depth can lead to false differences in gene expression.



• Why normalize gene expression within a cell? 
• cells are sequenced to different depths (technical)
• cells of different type have different amounts of mRNA (biological)
• there are typically extreme values in distribution of gene expression
• more highly expressed genes are more variable 

Single-cell RNA-Seq analysis: normalization



• How to normalize
• Gene expression measurements for each cell are normalized by the total gene 

expression or median gene expression
• Gene expression values then scaled to sum to 10,000 (typically), and then log(1+x)-

transformed.

Single-cell RNA-Seq analysis: normalization



Is standard normalization appropriate?
Reassessing the idea that droplet scRNA-Seq is zero-inflated.

Bulk Single 
cell

• “Droplet scRNA-seq is not zero-inflated.” Svensson, Nature Biotechnology (2020)

• ”Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.” Townes et al. 

Genome Biology (2019)

• “Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial 

regression.” Hafemeister et al. Genome Biology (2019)

• “Statistics or biology: the zero-inflation controversy about scRNA-seq data.” Jiang et al. Genome Biology (2022)



Cells are in ~20,000 dimensional space (one dimension 
for each gene)
• many genes are lowly detected or noisy measurements

• variable genes contain the biological signal we are interested in 

Identify highly variable genes
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Identify highly variable genes

Find genes (features) that are outliers in a plot of 
mean of gene expression vs variance of gene 

expression



Calculating gene signatures

Relying on capturing a specific gene is not robust, but 
relying on a set of genes (signature) is much more stable!



Example: cell cycle markers
variability of individual genes

Gene signature example: cell cycle markers
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https://satijalab.org/seurat/
https://scanpy.readthedocs.io/en/stable/

Seurat and scanpy: single cell analysis toolkits



• Seurat object is used for to store 10x data and perform analysis
• Count matrices for different assays are stored (gene expression, protein 

expression, chromatin accessibility, etc…)

• Counts are stored as: counts (raw), data (normalized), scaled data (centered and 
scaled) in sparse matrices when possible

• Metadata describes individual cells and genes

• Functions for analysis (quality control, normalization, feature selection, 
dimensional reduction, cell-cell distances, unsupervised clustering)

Interacting with Seurat objects

https://github.com/satijalab/seurat/wiki
https://satijalab.org/seurat/essential_commands.html

https://github.com/satijalab/seurat/wiki
https://satijalab.org/seurat/essential_commands.html


Interacting with Seurat objects

Seurat object

Accessing count slot from RNA assay

Accessing cell metadata

Running analysis function



gcdata <- CreateSeuratObject(counts = celseq.data)

Loading data into a Seurat object

counts matrix

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 …
Cell 
70K

Tcf7 3 3 0 0 0 0 … 4

Bach2 2 4 1 0 0 0 … 2

Prf1 1 0 5 3 1 1 … 1

Gzma 0 0 3 1 0 0 … 0

Pdcd1 0 1 1 0 4 6 … 0

Eomes 0 0 1 0 3 3 … 1

… … … … … … … … …

Gene 20K 2 1 0 1 0 0 … 3



Dense matrices

cells

genes

Storing counts data in dense vs sparse format

Sparse matrices


