Analysis of single-cell ATAC-seq data
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Combining single-cell transcriptomic
measurements with other data modalities can
reveal gene function and gene regulation.

Efremova M. et al. (2020) Nature Methods. 17:11-20.



ATAC-Seq detects accessible chromatin regions

In the cell nucleus, the chromosomes contain tightly packed chromatin material. Part of the chromatin
is open and accessible to many regulatory factors who control the expression and suppression of a
variety of genes.
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"How Single-Cell ATAC-Seq Works”, Bio-Rad Laboratories


https://www.youtube.com/channel/UCuxoeifh8VFy-SxllarGZnQ

ATAC-Seq detects accessible chromatin regions

ATACseq (as well as scATACseq) measures how open this piece of DNA is. This openness is a proxy of
how easily a transcription factor can bind these parts of the genome. ATACseq measures by using an
enzyme called Tn5 transposase which binds open chromatin and inserts DNA sequencing adapters.
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“How Single-Cell ATAC-Seq Works”, Bio-Rad Laboratories


https://www.youtube.com/channel/UCuxoeifh8VFy-SxllarGZnQ

Chromium Single Cell ATAC-Seq (10x)
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Single cell resolution reveals cell-type specific regulatory
elements
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Figure adopted from “Analyzing single-cell ATAC-seq datasets” lecture by Tim Stuart



Pre-processing generates a fragment file
and a peak/cell matrix

A full list of all unique
fragments across all single

cells, as opposed to only
reads that map to peaks.

1. Indexed fragment file 2. Large sparse matrix
AAACGAAAGAGTTTGA-1 AAACGAAAGCGAGCTA-1
chrom start stop barcode reads chri:565107-565550
chril 3000141 3000517 GGTTGCGAGCCGCAAA-1 3 chrl:569174-569639 . .
chrl 3000431 3000621 GAAGTCTGTAACACTC-1 1 chrl:752422-753038 . .
chrl:762106-763359 . 4

Each value in the matrix
represents the number of Tn5 cut

sites for each single barcode
(i.e. cell) that map within each
peak

Figure adopted from “Analyzing single-cell ATAC-seq datasets” lecture by Tim Stuart



scATAC-Seq data is highly sparse

1. Indexed fragment file 2. Large sparse matrix
AAACGAAAGAGTTTGA-1 AAACGAAAGCGAGCTA-1
chrom start stop barcode reads chr1:565107-565550
chrl 3000141 3000517 GGTTGCGAGCCGCAAA-1 3 chr1:569174-569639 . .
chrl 3000431 3000621 GAAGTCTGTAACACTC-1 1 chrl:752422-753038 . .
chrl:762106-763359 . 4

Challenges in comparison to scRNA:
1. More sparse
2. Near-binary data
3. Non-fixed feature set
4. Order of magnitude more features

Figure adopted from “Analyzing single-cell ATAC-seq datasets” lecture by Tim Stuart



Quality control metrics for scATAC-seq data

1. Nucleosome banding pattern

2. Transcriptional start site (TSS) enrichment
3. Total number of fragments in peaks

4. Fraction of fragments in peaks

TSS enrichment
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Overview of scATAC-Seq analysis
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Figure adopted from “Analyzing single-cell ATAC-seq datasets” lecture by Tim Stuart

" ® Further analysis



scATAC-Seq often uses latent semantic indexing (LSI) for
dimensionality reduction

» Originally developed for topic modeling / natural language processing
(Deerwester et al. 1990) and first applied to scATAC-Seq in 2015
(Cusanovich et al. Science)

* term frequency-inverse document frequency (TF-IDF) normalization
followed by singular value decomposition (SVD)

pbmc <— RunTFIDF(pbmc)

e Cell = document and peak = term pbmc <— FindTopFeatures(pbmc, min.cutoff = 'qo")
pbmc <- RunSVD(pbmc)

» Term frequency: normalize across cells to correct for differences in
sequencing depth

* Inverse document frequency: give higher values to more rare peaks

Figure adopted from “Analyzing single-cell ATAC-seq datasets” lecture by Tim Stuart



Visualize clusters in scATAC-Seq

pbmc <- RunUMAP(object = pbmc, reduction = 'lsi', dims = 2:30)

pbmc <- FindNeighbors(object = pbmc, reduction = 'lsi', dims = 2:30)
pbmc <- FindClusters(object = pbmc, verbose = FALSE, algorithm = 3)
DimPlot(object = pbmc, label = TRUE) + NolLegend()
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Figure adopted from signac tutorial, https://satijalab.ora/signac/articles/pbmc_vignette.html


https://satijalab.org/signac/articles/pbmc_vignette.html

Fragment file helps infer gene "activity” and annotate
clusters

Quantity the activity of each gene in the genome by assessing the chromatin
accessibility associated with each gene: count the number of fragments for
each cell that map to the promoter + gene body
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Figure adopted from signac tutorial, https://satijalab.org/signac/articles/pbmc_vignette.html



https://satijalab.org/signac/articles/pbmc_vignette.html
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Integrating with scRNA-seq data using
CCA + MNN (Seurat v4)
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Critical assumption: there is generally a positive correlation between
chromatin accessibility and gene expression!!!!

Figure adopted from signac tutorial, https://satijalab.ora/signac/articles/pbmc_vignette.html



https://satijalab.org/signac/articles/pbmc_vignette.html

Finding overrepresented motifs

To identify potentially important cell-type-specific regulatory sequences,
signac searches for DNA motifs that are overrepresented in a set of
peaks that are differentially accessible between cell types.
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Figure adopted from signac tutorial, https://satijalab.ora/signac/articles/pbmc_vignette.html



https://satijalab.org/signac/articles/pbmc_vignette.html

Computing motif activities

ChromVAR identifies motifs associated with variability in chromatin
accessibility between cells.
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Figure adopted from signac tutorial, https://satijalab.ora/signac/articles/pbmc_vignette.html



https://satijalab.org/signac/articles/pbmc_vignette.html

Software for scATAC-Seq analysis

Signac https://satijalab.org/signac/index.html

SnapATAC | https://github.com/r3fang/SnapATAC

ArchR https://www.archrproject.com/

cisTopic https://github.com/aertslab/cisTopic

chromVAR | https://github.com/GreenleaflLab/chromVAR

CICERO https://cole-trapnell-lab.github.io/cicero-release/




Software for scATAC-Seq analysis

Archi{ Signac SnapATAC
Pre-processing NR NA /
Data import / base file type creation / NA / Data
QC filter cells v v v Import
Matrix creation v’ (Tile) v’ (Peak) / (Tile)
Doublet removal / NP NP Doublet Removal
Data imputation with MAGIC NP
/ / Gene Scores
Genome-wide gene score matrix / / /
Dimensionality reduction and clustering
/ / / Clustering
UMAP and tSNE plotting v v v
Cluster peak calling / NP /
Cluster-based peak matrix creation / NP /
Motif enrichment Standard
v v v ATAC-seq
chromVAR motif deviations / / / Analyses
Footprinting ‘/ NP NP
Feature set annotation / NP NP
Track plotting v v N |
. Data
Co-accessibility / NP NP Visualization
Interactive genome browser / NP NP
Cellular trajectory analysis NP NP Advanced
v ATAC-seq
Project bulk data into scATAC embedding / NP NP Analyses
Integration of RNA-seq and ATAC-seq Tn-tédrét_ic;n_csf- o
/ / / RNA-seq and
Genome-wide peak-to-gene links / NP NP ATAC-seq

NR = Not Required NA = Not Applicable NP = Not Possible



Some approaches to multiome data (scRNA-seq
and scATAC-seq)

ArchR: https://greenleaflab.github.io/ArchR 2020/Ex-Analyze-
Multiome.html

Signac (same people who built
Seurat): https://satijalab.org/signac/articles/pbmc multiomic.html



https://greenleaflab.github.io/ArchR_2020/Ex-Analyze-Multiome.html
https://greenleaflab.github.io/ArchR_2020/Ex-Analyze-Multiome.html
https://satijalab.org/signac/articles/pbmc_multiomic.html

Methods to overcome sparsity in ATAC-seq data

Computing meta-cells is on methodology used to overcome sparsity in scATAC-seq data

Computing meta-cells (e.g. SEACells algorithm) can improve computation of peak-gene

associations

ScCRNA-seq
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Metacell Assignments




Methods to overcome sparsity in ATAC-seq data

Generate summarized ATAC and RNA metacells

Used the paired multiome metacells to compute the 50 - °
correlation of gene expression and accessibility of peaks within % ‘
the vicinity of the gene Q40 - ;
g !
Pick out highly regulated genes that are correlated with © 307
multiple peaks O
PIEp S 20 -
O
Calculate gene scores as the weighted sum of the accessibility qc_{ 104
of correlated peaks 2
0 -
To calculate gene accessibility metrics identify the subset of 0 10000 20000 30000
peaks that are open in each metacell Gene rank

Open peaks are used to compute a gene accessibility metric
which represents the fraction of correlated open peaks



Methods to overcome sparsity in ATAC-seq data

Gene expression

Accessibility




APPENDIX: OTHER MULTIMODAL METHODOLOGIES



CITE-Seq allows simultaneous measurement of RNA
expression and surface protein expression in same cell

PCR HANDLE ANTIBODY

BARCODE
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hybridize to RT oligos and
are indexed with cell barcode
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Count matrix1: scRNAseqg
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Antibodies are conjugated with DNA-oligos

* DNA-oligo indicates antibody identity and contains poly-A tail

\ 4 PCR HANDLE ANTIBODY BARCODE W(+A13)3’
S-S

AAAAAAA AAAAAAA

A A A

CD4 CD14 CD56



Pre-processing generates RNA count
and protein count matrices

scRNA-Seqg CITE-Seq

EENCINCTNECNCIN I O O N O
Genel Antibody
for CD4
Gene?2 KO 2 0 0 Antibody K8 0 45 0
for CD14
Gene3 |0 0 0 0 Antibody [ 0 0 0
for CD56




Simultaneous protein and RNA measurement in single cells
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Cell hashing using CITE-Seq

 Cell Hashing enables sample multiplexing and super-loading on single
cell RNA-sequencing platforms.

« Cell Hashing uses a series of oligo-tagged antibodies against
ubiquitously expressed surface proteins with different barcodes to
uniquely label cells from distinct samples, which can be subsequently

pooled in one scRNA-seq run.
AAAAAAA AAAAAAA AAAAAAA AAAAAAA

A jL\ jk\ j-L\ jk
B2M B2M B2M B2M

B2M



With cell hashing, we can “overload” the 10x channel

By sequencing these tags alongside the cellular transcriptome, we can assign each cell to

its sample of origin, and robustly identity doublets originating from multiple samples.
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Ongoing developments in single-cell genomics:

Growing toolbox for spatial genomics
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Ongoing developments in single-cell genomics:

Growing toolbox for spatial genomics

MERFISH (RNA) High Density Spatial Transcriptomics (RNA) | CODEX (protem)
H&E Annotations b e e

Major method differences

* detecting RNA or protein

» choosing target genes/proteins or full
transcriptome

* number of cells profiled

e single-cell or almost single-cell resolution

* in situ vs traditional sequencing



Slide-Seq overview (full transcriptome)
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Slide-Seq overview
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« Slide-Seq is close to single-cell resolution (10 um bead) but usually requires

deconvolution of the beads to identify the contributing single cells.

« Visium (10x) is a related spatial transcriptomic technology. todriue. 5. ot al. Science (2019
odrique, S. et al., Science .

Stickels, R. et al., Nature Biotechnology (2020).



MERFISH overview (choose target genes)

A Image 1 Image 2 Image 3 Image N Decoded image

“multiplexed error-robust fluorescence in situ hybridization (MERFISH), a massively parallelized
form of smFISH that can image and identify hundreds to thousands of different RNA species
simultaneously with high accuracy in individual cells in their native spatial context.”

Moffitt, J. R. and Zhuang, X. Methods in Enzymology (2016).



MERFISH overview

Imaging 100s-1000s RNA species in their native cellular and tissue environment

Moffitt, J. R. and Zhuang, X. Methods in Enzymology (2016).



MERFISH overview
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MERFISH overview
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CODEX overview (choose target proteins)

Stain and iteratively image antibodies applied to a tissue sample

‘
Patients

FFPE samples
on TMAs

2
DNA-conjugated
antibody panel

Antigen 1 \{

g ™
N\ "

Antigen \J\I(

unique oligos

3
Staining mix
50+ antibodies

4 S

Image processing
N-dimensional image

Iteratively render and image 3 antibodies
by adding 3 complementary fluorescent probes

repeat
N times

L

image

strip DNA probe
wash

re-render re-image S

Schirch, C. M. et al., Cell (2020).
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CODEX overview: multi-tumor tissue microarray
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CODEX overview: multi-tumor tissue microarray
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CODEX overview: 56 antibody marker panel

Patient 11 (CLR) Patient 30 (DII)

Hoechst

Big challenges
* Imaging

» Segmentation
* Analysis

+ + »
CD11¢c E B cells cD8 Mixed immune CD4 Non-immune NK cells Macrophages

DCs T celis cells T cells cells




Perturb-Seq overview

& ©
5

|. Pooled sgRNA library, [I. Transduce cells lll. Capture cells, I\V. Match guide barcode
polydenylated guide barcode (low or high MOI) barcode mRNA to transcriptome

Perturb-Seq advantages
* no need to define a phenotype beforehand
* single cell readout

pooled format

higher order interactions

Dixit*, Parnas* et al., Cell 2016; Adamson*, Norman* et al., Cell 2016




Perturb-Seq overview

Perturb-Seq links perturbations to their
effects on the transcriptome
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Dixit, et al. Cell (2016).



Ongoing developments in single-cell genomics:
Perturb-Seq
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Perturbations reveal gene regulation logic

Guides and genes cluster into transcription factor modules (M)
and regulated expression programs (P) respectively.
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dendritic cells are
stimulated with LPS.
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Perturbations reveal gene regulation logic

Modules
M1 M2 M3 M4
Stat1 Cebpb Rel Nfkb1
Stat2 Rela Atf3 Runx1
HIF1a Irf2 Irf4
Stat3 Spit
JunB

P1

* Antiviral
response

P2

* Ag presentation
* T-cell activation
* Cytoskeleton

* RPs

P3

* Mitochondrial
function and
biogenesis

P4

* IFNy response

* Chemokines

* Cytokines

* Response to
intracellular
pathogens

P5

* Inflammation
* TNF

* LPS response
* ROS

Statl,
Atf3, Irf2

Irf4,
Rel, Stat3

Programs

Cebpb, Hifla,
Spit

. Module activates program
‘ Module represses program

TFsin
Programs



