Lecture 4

Identifying cell populations

Physalia course 2023

Single-cell RNA-seq with R/Bioconductor

Instructors: Orr Ashenberg & Jacques Serizay



How Do We Define Cellular Identity?

A cell participates in multiple processes/contexts.

ITS CYTOKINES

Herold, K. C., & Bluestone, J. A. (2011). Type 1 diabetes immunotherapy: is the glass half empt
or half full?. Science translational medicine, 3(95), 95fs1-95fs1.
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Dimensional reduction in scRNAseq studies

High-dimensional data can be difficult to interpret.

One approach to simplification is to assume that the data of interest lies within lower-dimensional
space. If the data of interest is of low enough dimension, the data can be visualised in the low-
dimensional space.

- A scRNA seq starts with many measurements (features, genes).

- We want to reduce it to fewer informative dimensions.

- We have starting doing this by using only highly variable genes.

- We can further reduce dimension with linear or non-linear approaches.



Dimensional reduction in scRNAseq studies

High-dimensional data can be difficult to interpret.

One approach to simplification is to assume that the data of interest lies within lower-dimensional
space. If the data of interest is of low enough dimension, the data can be visualised in the low-
dimensional space.

Common Techniques

Principal Component Analysis (PCA)

- Independent Component Analysis (ICA)
- Multidimensional Scaling (MDS)
- Non-negative Matrix Factorization (NMF)

- Probabilistic Modeling (e.g. Latent Dirichlet Allocation - LDA)



Principal Component Analysis

- PCA s a dimensionality reduction
method that transforms a set of
features into a set of linearly
uncorrelated variables called
principal components

1,000s cells

1,000s cells

10,000 genes

(few) Principal components

https.//stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues 7



Principal Component Analysis

- PCA s a dimensionality reduction
method that transforms a set of
features into a set of linearly z |
uncorrelated variables called
principal components

- The first principal component
contains the most variance, and
each component after contains as
much variance while still being
orthogonal to other components
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https.//stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues 8



Principal Component Analysis: assessing lower dimensions

Notice how lower PCs
look more and more
“spherical” - this loss of
structure indicates that
the variation captured by
these PCs mostly
reflects noise.




Principal Component Analysis: assessing lower dimensions
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Going further: non-linear dimensional reductions

In a t-SNE projection, similar objects (cells) are modeled

by nearby two-(three)dimensional points and dissimilar
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Caution with tSNE visualization

Nonlinear--optimized for local distance

Caveats to be aware of: L 0 S20%
R L ™Y ® 00o
Distances between clusters may not 3 * ¥
mean anything—large distances do not A~ &
necessarily reflect large dissimilarity AB° e xle R T
o R NI T
PC2 PC 2

Big clusters can just mean more cells

Perplexity parameter or expected °
number of neighbors (default 30 in ":@ &
Seurat) can make it hard to find very .
rare subpopulations (5 cells or less). 2
tSNE

Number of iterations run will also affect
final visualization

A great tSNE resource! https://distill.pub/2016/misread-tsne/
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https://distill.pub/2016/misread-tsne/

Caution with tSNE visualization
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A great tSNE resource! https://distill.pub/2016/misread-tsne/
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https://distill.pub/2016/misread-tsne/

Other non-linear dimensional reduction approaches

e Force-directed graph embedding
e UMAP

e Diffusion Maps

e Non-negative Matrix Factorization

e Probabilistic (topic models/Latent Dirichlet Allocation (LDA))

BE AWARE!!
- Some are linear, some other are not.

- While PCA is a general “one-size-fits-all” approach, others will yield more specific outputs,

targeting a particular question.
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Other non-linear dimensional reduction approaches

Research | Open Access | Published: 10 December 2019

Accuracy, robustness and scalability of dimensionality
reduction methods for single-cell RNA-seq analysis

Shiquan Sun, Jiagiang_Zhu, Ying Ma & Xiang_Zhou

(GEO 28 sCRNA-seq Data +

Genome Biology 20, Article number: 269 (2019) —y e bl e g N -'
9331 Accesses | 27 Citations | 39 Altmetric MDS, PCA ZIFA. UMAP
tSNE, LLE, ICA ZINB-WaVE
lsqmap, NMF DCA, scScope

Poisson NMF Diffusion Map

Cell Clustering Neighborhood Trajectory Inference
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Hierarchical Clustering Monocle3
Evaluatio
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Different methodologies for clustering
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"Traditional” clustering
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"Traditional” clustering

Affinity
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MeanShift
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https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
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"Traditional” clustering

K-means algorithm is both fast and generally reliable, as a first approach.

;.
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Graph-based clustering
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Why do we need graph-based clustering?

Curse of dimensionality:

“All data become sparse in high-dimensional space and therefore similarities measured by Euclidean

distances etc are generally low between all objects.”

There is no point performing a hierarchical clustering of 10,000 cells if 90% of the pairwise

distances are null !!

Andrews et al., 2018 22



Building a k-Nearest Neighbors graph (with k = 4)

Physalia
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Building a k-Nearest Neighbors graph (with k = 4)
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)

Two cells are connected by an edge if any of their nearest neighbors are shared.
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Extending KNN to SNN graphs (Shared Nearest Neighbors) (still with k = 4)
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(a) Parameter K = 2
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(c) Parameter K = 6
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from '00s).

Cell-cell ‘
~ distances
(n) cells

(n) cells

33



Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from '00s).

Many different algorithms for community detection:

. T a. OPTIMAL PARTITION b. SUBOPTIMAL PARTITION
- Louvain (heuristic) M=0.4 M=0.22
- Infomap
- Walktrap
c. SINGLE COMMUNITY d. NEGATIVE MODULARITY
M=0 M= -0.12

Most of them are based on modularity maximization
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Graph-based clustering

Graph-based clustering is nothing more than community detection (an “old” field from '00s).

) S—_—
MICHELE COSCIA

d%?g-:::s 5 T HE AREASSIIRST hhE
(n) cells ; ASPIRING NETWORK

SCIENTIST

(n) cells

arXiv:2101.00863v2

The Atlas for the Aspiring
Network Scientist,
Michele Coscia 2021
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Graph-based clustering

CAREFUL!

A graph can be visualized (i.e. embedded)

in 2D, but the graph-based clustering step o]

(i.,e. community finding) is not done on its
2D embedding!!

“Do not let the tail (of visualization) wag the dog (of

quantitative analysis)”

871

-- A. Lun

-20 -10 0 10
force 1
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Visualizing expression of a gene of interest

On the dataset embedding:

Cdk1

oO=NWrLO
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Visualizing expression of a gene of interest

On the dataset embedding: By clusters:

Cdk1

Expression (logcounts)

oO=NWrLO
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Visualizing expression of a module of interest

On the dataset embedding: By clusters:
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Analysis workflow
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Differential Expression Testing

In scRNA-seq we often do not have a defined set of experimental conditions.

Instead, we can perform pairwise comparisons of gene expression, between pairs of cell clusters,

using some of the following tests:

"wilcox" : Wilcoxon rank sum test (default)

t" . Student’s t-test

"poisson” : Likelihood ratio test assuming an underlying poisson distribution. Use only for UMI-based
datasets

"negbinom” : Likelihood ratio test assuming an underlying negative binomial distribution. Use only
for UMI-based datasets

Others...
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Differential Expression Testing

In scRNA-seq we often do not have a defined set of experimental conditions.

Instead, we can perform pairwise comparisons of gene expression, between pairs of cell clusters,

using some of the following tests:

See Seurat::FindMarkers() and scran::findMarkers() for more info...

markers <- scran::findMarkers (
sce,
groups = sceScluster,
test.type = “t”

)

43



Differential Expression Testing QQL

Think about your experimental design!!!

?
?

@ 0P
)
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Differential Expression Testing

Think about your experimental design!!!

' Not all the cells are the same: there
are confounding variables.

@ 0P
)
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Differential Expression Testing

Think about your experimental design!!!

?
?

@ 0P

1,000s cells

BLOCKING
MATRIX

Not all the cells are the same: there
are confounding variables.

markers <- scran::findMarkers (

sce,
groups = sceScluster,
test.type = "t”,

block = <BLOCKING MATRIX>

46



Differential Expression Testing: many different assays...

Physalia

Courses

Again, different tests are available and depending on your study case, might be more/less appropriate.

| would recommend going with t-test as default.
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Figure 3 | Average similarities between gene rankings obtained by the evaluated DE methods. The dendrogram was obtained by complete-linkage

Soneson and Robinson, 2018

hierarchical clustering based on the matrix of average AUCC values across all data sets. The labels of the internal nodes represent their stability across
data sets (fraction of instances where they are observed). Only nodes with stability scores of at least 0.1 are labeled. Colored boxes represent method
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Analysis workflow
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Cell type annotation using identified markers per cluster
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Manual cell type annotation using identified markers per cluster

Top markers of cluster #7 in PBMCs:
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Automated cell type annotation using public marker databases % ccccccc

SingleR can rely on references of pure cell types to annotate individual cells within a scRNAseq dataset.

Heterence
Unannotated transcriptomes of Annotated
scRNA-seq data pure cell types single cells

Step 1. Stepd: terative fine-tuning—reducing the
Identifying variable reference set to only top cell types

genes among cell types <

in the reterence set g 16 '
§ 03 | |
Step 2 3 42 = ! $ .
Correlating each @ 202 . by
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01234 & F TS F &
& X (4 ol ke
Single cell ¥ N w
<

Aran et al., Nat. Immuno. 2019 5 1
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Automated cell type annotation using public marker databases Wf |
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However, it is limited in sensitivity, as it can only identify cells based on the references used.

sssssss
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Automated cell type annotation using public marker databases

Huge (and growing!) collection of tools for automated cell annotation...

Abdelaal et al., Genome Biol. 2019

@ Physalia

ke

i

Name Version Language Underlying classifier Prior knowledge Rejection option
Garnett 0.1.4 R Generalized linear model Yes Yes
Moana 011 Python SVM with linear kernel Yes No
DigitalCellSorter GitHub version: e369a34 Python Voting based on cell type markers Yes No
SCINA 1.1.0 R Bimodal distribution fitting for marker genes Yes No
scVI 0.3.0 Python Neural network No No
Cell-BLAST 0.1.2 Python Cell-to-cell similarity No Yes
ACTINN GitHub version: 563bcc1 Python Neural network No No
LAmMbDA GitHub version: 3891d72 Python Random forest No No
scmapcluster 1.51 R Nearest median classifier No Yes
scmapcell 1.5.1 R kNN No Yes
scPred 0.0.0.9000 R SVM with radial kernel No Yes
CHETAH 0.99.5 R Correlation to training set No Yes
CaSTLe GitHub version: 258b278 R Random forest No No
SingleR 0.2.2 R Correlation to training set No No
sclD 0.0.0.9000 R LDA No Yes
singleCellNet 0.1.0 R Random forest No No
LDA 0.19.2 Python LDA No No
NMC 0.19.2 Python NMC No No
RF 0.19.2 Python RF (50 trees) No No
SVM 0.19.2 Python SVM (linear kernel) No No
SVMgjection 0.19.2 Python SVM (linear kernel) No Yes
kNN 0.19.2 Python kNN (k=9) No No
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Automated cell type annotation using public marker databases

Huge (and growing!) collection of tools for automated cell annotation...
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