Quality control for scRNAseq data
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Lecture topics
* Interacting with Seurat objects

 Quality control, normalization, and feature
selection starting from raw count or expression
matrices

* Next step will be dimensionality reduction,
clustering, and visualization
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Kiselev C. at al. (2019) Nature Reviews Genetics. 20: 273-282.



Interacting with Seurat objects

* Seurat object is used for to store 10x data and perform analysis

 Count matrices for different assays are stored (gene expression, protein
expression, chromatin accessibility, etc...)

* Counts are stored as: counts (raw), data (nhormalized), scaled data (centered and
scaled) in sparse matrices when possible

* Metadata describes individual cells and genes

* Functions for analysis (quality control, normalization, feature selection,
dimensional reduction, cell-cell distances, unsupervised clustering)

https://github.com/satijalab/seurat/wiki
https://satijalab.org/seurat/essential commands.html



https://github.com/satijalab/seurat/wiki
https://satijalab.org/seurat/essential_commands.html

Interacting with Seurat objects

> gcdata
An object of class Seurat
35633 features across 2000 samples within 2 assays Seurat object
Active assay: RNA (33633 features)
1 other assay present: integrated
% dimensional reductions calculated: pca, umap

> gcdatal[["RNA']]@data[1:5,1:5]
5 x 5 sparse Matrix of class "dgCMatrix"
D2ex_5 D2ex_6 D2ex_7 D2ex_11 D2ex_13 .
A1BG-AS1 . . . . Accessing count slot from RNA assay
A1BG . . .. .
A1CF
AZM-AS1 . ..
AZMLl . . . 1.226772

> goaatall1111:5;: 1:5]

orig.ident nCount_RNA nFeature_RNA tech integrated_snn_res.1
D2ex_5 D2ex 5745.867 2548 celseq 4
D2ex_6 D2ex 6883.692 2619 celseq 6 Access|ng Ce” metadata
D2ex_7 D2ex  7460.202 3043 celseq 5
D2ex_11 D2ex 8330.644 3465 celseq 5
D2ex_13 D2ex 3891.960 1962 celseq 6

> gcdata <- ScaleData(gcdata) F{ . | . f t.
Centering and scaling data matrix unning analysis tunction

I | 100%




Loading data into a Seurat object

gcdata <- CreateSeuratObject (counts = celseqg.data)

|

counts matrix

Celll |Cell2 |Cell3 | ... | Cell 5K

Gene 1 3 0 1 2

Gene 2 0 2 0 1

Gene 3 1 0 3 -

Gene K 14 7 1 0

Gene 25K 0 13 1 0




Storing counts data in dense vs sparse format

2D Arrays Coordinate List
1 2 3 Zell'>86 7 8

00 0/0/000]|0 |1 2211
01000/0/0|0 |2 632
0/0/0002]|0/0 3% 363
00000000 |25

0000|0000 |5

00000/0|0|3 |s

Dense matrices Sparse matrices



There are many quality control filters for genes and cells

Genes detected per cell (ordered)
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There are many quality control filters for genes and cells

» We filter cells based on technical or biological parameters.

# reads or # genes % mito
UMIs detected  detected expression

in a cell in a cell in a cell
nCount_RNA nFeature_RNA percent.mt

3e+06 -

2e+06 A

1e+06 -

N N N
Identity Identity Identity



Filtering with combinations of quality control filters

Low nUMI and high %
mitochondrial- Cells captured but
lost a lot of the mRNA, and the
mitochondrial genes were
protected and retained

High nUMI & high nGene -
doublets

-0.13

15000

0.95




Appropriate quality control filters vary with platform and
cell types

» Different platforms set different expectations

* e.g. Smart-Seq?2 often yields more genes detected per cell
than 10x Chromium.

» Different cell types set different expectations

* Immune cells normally have fewer genes detected per cell
than non-immune cells

 Malignant cells normally have more genes detected per cell
than non-malignant cells



A classifier for low-quality cells
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"The pipeline takes advantage
of a highly-curated set of
generic features that are
incorporated into a machine
learning algorithm to identify
low quality cells.”

llicic T. et al. (2016) Genome Biology 17: 29.



A classifier for low-quality cells

SVM feature weights

Not-aligned-reads
Cytoplasm
Multi-mapped-reads

Non-coding—RNA-reads

M{DNA
Mapped-reads

Transcriptome-variance
Mitochondria-~downregulated

e High quality cells
e _ow quality cells

What are caveats
to this approach?

llicic T. et al. (2016) Genome Biology 17: 29.



Other quality control filters for genes and cells

* Doublets

* number of genes #
e number of UMIs &
* percentage of mitochondrial gene expression ==

* Ambient RNA and empty droplets

* number of genes @
* number of UMIs g
» percentage of mitochondrial gene expression #

* Barcode swapping



Cell doublets can be misleading

Because of the setup, it is possible that two or more cells can enter the same droplet.
Studies estimate doublet frequency through a “mixed-species” experiment
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The doublet frequency is positively correlated with throughput |
Slidecourtesy of Karthik Shekhar



Detecting cell doublets with Scrublet

Scrublet (Single-Cell Remover of Doublets)
Singlets

DOO &

)
\/

Wolock, Lopez, Klein. Cell Systems 8.4 (2019): 281-291.



Detecting cell doublets with Scrublet

Single-cell RNA-seq generates doublet artifacts
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Wolock, Lopez, Klein. Cell Systems 8.4 (2019): 281-291.



Detecting empty drops containing ambient RNA - manual

Look for transcripts expressed in unexpected cell types

and remove those genes from all subsequent analysis
* e.g. hemoglobin expressed ina T cell



Detecting empty drops containing ambient RNA - automatic

EmptyDrops (distinguish cells from empty droplets)

Cells ranked by total
unique molecular identifiers (UMI)

10000 Cell encapsulated in
droplet
1000 -
@ @ Mixture
100
Ambient RNA
encapsulated in droplet

1e+01 1e+02 1e+03 1e+04 1e+05

Total UMI detected per cell

10 7

Lun, A.T.L. et al. Genome Biol (2019). 20, 63.



Detecting barcode swapping in multiplexed samples

5’ Barcode 4/\ baFr::?)%e |{| DNA
ol. . .
DNA “’ P “Barcode swapping is a phenomenon that occurs upon
T~ KA capture multiplexing samples on the Illumina 4000 sequencer.
¥ Barcods probe Molecules from one sample are incorrectly labelled
Fowcell | / | > | I with sample barcodes from another sample, resulting in
Il ] . . . .
e — — their misassignment upon demultiplexing.”
Barcode collision Template extension
"Specifically, we considered molecules across multiplexed
samples that contain the same combination of unique
molecular identifier, cell barcode, and aligned gene.”
I AR A R A
Swapped transcript release
Amplification

(ExAmp) ||
N LI L LA N I L L LA

peAbiegn SHaRRed A Griffiths, J. A. et al. Nature Communications (2018).9: 2667.
https://bioconductor.org/packages/devel/bioc/vignettes/DropletUtils/inst/doc/DropletUtils.html#removing-the-effect-of-barcode-swapping



https://bioconductor.org/packages/devel/bioc/vignettes/DropletUtils/inst/doc/DropletUtils.html
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Tool to detect empty drops, correct ambient RNA and

barcode swapping

CellBender remove ambient background and barcode
swapping via deep learning

Detecting empty droplets
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Normalizing gene expression in each cell

* Why normalize gene expression within a cell?
» cells are sequenced to different depths (technical)
» cells of different type have different amounts of mRNA (biological)
* there are typically extreme values in distribution of gene expression
* more highly expressed genes are more variable

Total expression before normalisation
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Normalizing gene expression in each cell

e How to normalize

« Gene expression measurements for each cell are normalized by the
total gene expression or median gene expression

* Gene expression values then scaled to sum to 10,000 (typically), and
then log-transformed.
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Is standard normalization appropriate?

Reassessing the idea that droplet scRNA-Seq is zero-inflated

“Zero inflation” poses a

-

‘ challenge in single-cell data!
Group A
Single
Bulk Group C 5 Group 1
cell
0 cRRReee
B 884 Saatests ¥a oI 510 2
> 0 1 2 3
Expression

Expression
«  "Droplet scRNA-seq is not zero-inflated.” Svensson, Nature Biotechnology (2020)
«  "Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial
model.” Townes et al. Genome Biology (2019)
*  “Normalization and variance stabilization of single-cell RNA-seq data using regularized

negative binomial regression.” Hafemeister et al. Genome Biology (2019)



Is standard normalization appropriate?
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Example of how current approaches to normalization and transformation artificially distort
differences between zero and nonzero counts. a UMI count distribution for gene
ENSG00000114391 in the monocytes biological replicates negative control dataset. b Counts per
million (CPM) distribution for the exact same count data. ¢ Distribution of log,(1+CPM) values for
the exact same count data

William Townes F. et al. Genome Biology (2019) 20: 295.
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Identify highly variable genes

Cells are in ~20,000 dimensional space (one dimension for

each gene)
* many genes are lowly detected or noisy measurements

« variable genes contain the biological signal we are interested in



Identify highly variable genes
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Find genes (features) that are outliers in a plot of mean
of gene expression vs variance of gene expression



Calculating gene signatures

Relying on capturing a specific gene is not robust, but
relying on a set of genes (signature) is much more stable!
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cell cycle genes



