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Preface
My first real exposure to the Bioconductor project was in 2003where I attended, and helped organize,
a workshop on Bioconductor at Kolle Kolle in Denmark taught by Sandrine Dudoit and Vince Carey.
Looking back, this workshop had a profound impact on my career. It led to Sandrine becoming my
Ph.D. advisor and started my ongoing involvement with the Bioconductor project.

At that time I had a Masters in Statistics and was working in the Department of Biostatistics at
University of Copenhagen as a research assistant. I knew next to nothing about computational
biology, except that I had gotten tired of using statistics to do epidemiology and I was looking
for some other application area for my statistical skills. But I had a good background in R, having
used it since at least version 0.65, so I was asked to help with the workshop by the local organizer,
Peter Dalgaard (then and now a member of R-core), who was a colleague at the Department of
Biostatistics.

Duringmy Ph.D. I developed several R packages released through the Bioconductor project. I became
involved in the user community, first through the email list and later by attending the yearly
Bioconductor meeting. Eventually, I joined the technical advisory board for the project.

My example is an illustration of the Bioconductor goal of “users are encouraged to become
developers”. Over the years I have seen other participants from the email lists (and now online
support forum) go from beginners to experienced developers. I have benefited immensely from my
involvement in the Bioconductor community and I highly encourage other users to take the same
path. I hope this book will be a guide in this process for some of you.

i



1. What is Bioconductor
The Bioconductor¹ project is an open source and open development platform for computational
biology. It is a also a repository of packages for the R² programming language, focused on
computational biology.

“Open source” means that anyone can view (and modify) the source code.

“Open development” means that anyone can join in developing software for Bioconductor, although
the software needs to satisfy certain minimal requirements.

In practice, Bioconductor is a loosely structured collection of software packages, developed by
different groups all over the world. The software packages differ enormously in size and quality,
although there are certain (enforced) minimum requirements. In general, these requirements mean
that the software can be used on many different platforms and comes with a decent level of
documentation. It is common that a single task is addressed by multiple packages, that may then
compete with each other for users. Anyone is allowed to contribute a new package to the project,
even if the package contains functionality covered by an existing package. This ensures some amount
of healthy competition in the project.

The Bioconductor website and repository is maintained by a core group of developers, the “core
team”. Beside maintaining the website, support forum and the software repository, the core team
is also actively involved in package development. They usually focus on infrastructure packages,
which are widely useful to a significant class of users and developers.

The repository contains three types of packages: software, annotation and experimental data pack-
ages. Software packages are classic R packages addressing a specific problem with computational
and statistical methods. Annotation packages are bundles of annotation which are compiled for use
in Bioconductor, for example microarray annotation files. And finally experimental data packages
are cleaned and processed data for common use, for example in package documentation and testing,
or in teaching.

1.1 What is this book

This book provides an overview of the core technologies used in Bioconductor. It is my opinion that
anyone who uses Bioconductor ought to have some understanding of the subjects covered here.

A main component of Bioconductor’s success has been that it provides very useful statistical and
graphical functionality for Genomic Data Science. This book – perhaps surprisingly – does not cover

¹http://www.bioconductor.org
²http://www.r-project.org

1

http://www.bioconductor.org
http://www.r-project.org
http://www.bioconductor.org
http://www.r-project.org
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much of this functionality. Using Bioconductor for Genomic Data Science requires some knowledge
of statistics and genomics, and I have tried to write this book book without assuming much (if
any) knowledge of these subjects. As such, most readers will need to learn specific packages and
workflows for the types of analysis they want to do; the last chapters provide some (hopefully)
useful examples of this.

This book is not a comprehensive text on the core technologies of Bioconductor. Instead I have tried
to provide an overviewwhich should give the interested reader a “big picture” idea of how the core
components fit together. After reading this book, you’ll probably find that there are many additional
important details. To learn this, you will have to start using the different package vignettes and help
pages; this book will give you a firm foundation to start doing this.

I hope you’ll enjoy the book; feel free to give feedback on twitter or by email.



2. Installing Bioconductor
2.1 Installing Bioconductor

The one true way to install Bioconductor is by using the biocLite script. You get access to this script
by sourcing it from the Bioconductor website

> source("http://www.bioconductor.org/biocLite.R")

The first time you run the script without arguments, it will install a core set of Bioconductor
packages.

> biocLite()

When you run this script, it will autodetect if any of your installed packages are out of date; it will
aggressively ask you to update your packages.

Because of this, the way you update a Bioconductor installation, is just by running biocLite()

without any argument.

You can check if your installation is fully up-to-date, by running biocValid(); it will return TRUE if
everything is current.

You install a new package by using biocLite with the package name, for example

> biocLite("limma")

The reason why you want to use biocLite - and only this function - to install and update Biocon-
ductor, is because one of the top problems users have is when they mix and match Bioconductor
packages from different releases. Using biocLite ensures that everything is synchronized.

The way you update Bioconductor itself when a new release comes out, is by updating R itself and
then run biocLite().

There are more comprehensive installation instructions on the Bioconductor site¹.

¹http://bioconductor.org/install
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3. Online Resources for Bioconductor
Watch video 1¹ and video 2² of this chapter.

3.1 Overview

Bioconductor is very well documented, compared to most other pieces of academic software. But
sometimes the documentation is hard to find or hard to get started with. One of the problems is that
sometimes useful documentation is scattered around different sources and sometimes it is hard to
find exactly what you want to accomplish a given task. This document has a short overview of some
of the more useful web sites and resources. The intention is that, as you learn more and more, you
will return to some of these sources to get the gory details.

3.2 Bioconductor packages and documentation

Bioconductor is organized into packages and there are minimal requirements for the documentation
of a package. All we can really check is whether the documentation is there, not whether it is useful.
But it is my experience that most packages are very well documented, although they sometimes
assume some basic familiarity with the conventions of the project.

Bioconductor has been a leader in the R community wrt. package vignettes. A vignette is a small
manual, typically giving a holistic overview of the package and its capabilities. The first thing I do,
when I examine a new package, is to skim the vignette to get some idea of what I can accomplish
with the software. A package can contain multiple vignettes.

In addition to the package vignettes, there are the man pages. These help pages describes the details
of each function, how to use it and what the arguments are. But most of the time, the different help
pages does not provide a good idea of how to put it all together to achieve a task. This is the intention
of the vignette(s).

Package vignettes are installed inside of R. You can access vignettes in the following ways

1. Through the online help (for example in RStudio).
2. Through the vignettes() function in R, but that requires you know the name of the vignette.
3. Through the browseVignettes() function in Biobase which shows a list of installed vignettes

in a browser (this is a different interface to the RStudio help interface).

¹https://youtu.be/TIj2ckwJmqM
²https://youtu.be/290_-Ca5iAk
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In addition, the vignettes are available from the Bioconductor site³; this is often how I access them.

A useful trick is to get a listing of all help pages in a given package. You can do this through the
online HTML help (not all ways of interacting with R gives you access to the HTML help system).
Another useful trick (which I use all the time) is to do

> library(NAME = help)

where NAME is the package name.

3.3 The Bioconductor site

The Bioconductor site⁴ has a wealth of great information. Here are some pointers

• Workflows⁵. This is a new addition to Bioconductor; the intention is to provide across-package
description of useful functionality.

• Software packages⁶; note the use of biocViews to the left of the page, this might be useful if
you are searching for specific functionality.

There are also developer HOWTOs, which are very useful for developing packages. And you can
browse an exhaustive list of the different packages.

3.4 Other resources

• The Bioconductor support site⁷; this is a great place to ask questions.
• The posting guide⁸ for the Bioconductor support site. Read this before asking questions; it will
maximize your chance of getting a useful answer.

• Stack Overflow (R)⁹; this is a popular help site for computer programming.
• Stack Overflow (Bioconductor)¹⁰; this is a popular help site for computer programming.
• R Documentation¹¹; a search engine for all documentation from all packages from CRAN and
Bioconductor.

• R Seek¹²; like “R Documentation” but it also search a few other sites and is based on a different
search engine.

³http://www.bioconductor.org
⁴http://www.bioconductor.org
⁵http://bioconductor.org/help/workflows/
⁶http://bioconductor.org/packages/release/BiocViews.html#___Software
⁷https://support.bioconductor.org
⁸http://bioconductor.org/help/support/posting-guide/
⁹http://stackoverflow.com/questions/tagged/r
¹⁰http://stackoverflow.com/questions/tagged/bioconductor
¹¹http://www.rdocumentation.org/
¹²http://rseek.org
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4. An overview of base types in R
Watch a video¹ of this chapter.

4.1 Dependencies

This document has no dependencies.

4.2 Overview

Bioconductor has a rich class of different types of objects. Some are used to represent entire
experiments (such as ExpressionSet, covered later) and some are used to represent simpler
structures. It is my experience that a prerequisite for understanding and using many Bioconductor
objects efficiently, is a good understanding of the different base types in R. This document contains
a brief overview of these objects and how to subset and manipulate them.

4.3 Atomic Vectors

The most basic object in R is an atomic vector. Examples includes numeric, integer, logical,
character and factor. These objects have a single length and can have names, which can be used
for indexing

> x <- 1:10

> names(x) <- letters[1:10]

> class(x)

[1] "integer"

> x[1:3]

a b c

1 2 3

> x[c("a", "b")]

a b

1 2

The following types of atomic vectors are used frequently

¹https://youtu.be/bw55cuD6bqA
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• numeric - for numeric values.
• integer - for integer values.
• character - for characters (strings).
• factor - for factors.
• logical - for logical values.

All vectors can have missing values.

Note: names of vectors does not need to be unique. This can lead to subsetting problems:

> x <- 1:3

> names(x) <- c("A", "A", "B")

> x

A A B

1 2 3

> x["A"]

A

1

Note that you donâ€™t even get a warning, so watch out for non-unique names! You can check for
unique names by using the functions unique, duplicated or (easiest) anyDuplicated.

> anyDuplicated(names(x))

[1] 2

> names(x) <- c("A", "B", "C")

> anyDuplicated(names(x))

[1] 0

anyDuplicated returns the index of the first duplicated name, so 0 indicates nothing is duplicated.

Integers in R

The default in R is to represent numbers as numeric, NOT integer. This is something that can
usually be ignored, but you might run into some issues in Bioconductor with this. Note that even
constructions that looks like integer are really numeric:
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> x <- 1

> class(x)

[1] "numeric"

> x <- 1:3

> class(x)

[1] "integer"

The way to make sure to get an integer in R is to append L to the numbers

> x <- 1L

> class(x)

[1] "integer"

So why the distinguishing between integer and numeric? Internally, the way computers represents
and calculates numbers are different between integer and numeric.

• integer mathematics are different.
• numeric can hold much larger values than integer.
• numeric takes up slightly more RAM (but nothing to worry about).

Point 2 is something you can sometimes run into, in Bioconductor. The maximum integer is

> .Machine$integer.max

[1] 2147483647

> 2^31 -1 == .Machine$integer.max

[1] TRUE

> round(.Machine$integer.max / 10^6, 1)

[1] 2147.5

This number is smaller than the number of bases in the human genome. So we sometimes
(accidentally) add up numbers which exceeds this. The fix is to use as.numeric to convert the
integer to numeric.

This number is also the limit for how long an atomic vector can be. So you cannot have a single
vector which is as long as the human genome. In R we are beginning to get support for something
called “long vectors” which basically are â€¦ long vectors. But the support for long vectors is not yet
pervasive.

4.4 Matrices

matrix is a two-dimensional object. All values in a matrix has to have the same type (numeric or
character or any of the other atomic vector types). It is optional to have rownames or colnames and
these names does not have to be unique.
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> x <- matrix(1:9, ncol = 3, nrow = 3)

> rownames(x) <- c("A","B", "B")

> x

[,1] [,2] [,3]

A 1 4 7

B 2 5 8

B 3 6 9

> dim(x)

[1] 3 3

> nrow(x)

[1] 3

> ncol(x)

[1] 3

Subsetting is two-dimensional; the first dimension is rows and the second is columns. You can even
subset with a matrix of the same dimension, but watch out for the return object.

> x[1:2,]

[,1] [,2] [,3]

A 1 4 7

B 2 5 8

> x["B",]

[1] 2 5 8

> x[x >= 5]

[1] 5 6 7 8 9

(note how subsetting with a non-unique name does not lead to an error). If you grab a single row
or a single column from a matrix you get a vector. Sometimes, it is really nice to get a matrix; you
do that by using drop=FALSE in the subsetting:

> x[1,]

[1] 1 4 7

> x[1,,drop=FALSE]

[,1] [,2] [,3]

A 1 4 7

There are a lot of mathematical operations working on matrices, for example rowSums, colSums and
things like eigen for eigenvector decomposition. I am a heavy user of the package matrixStats² for
the full suite of rowXX and colXXwith XX being any standard statistical function such as sd(), var(),
quantiles() etc.

Internally, a matrix is just a vector with a dimension attribute. In R we have column-first
orientation, so the columns are filled up first:

²http://cran.fhcrc.org/web/packages/matrixStats/index.html
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> matrix(1:9, 3, 3)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> matrix(1:9, 3, 3, byrow = TRUE)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

4.5 Lists

lists are like vectors, but can hold together objects of arbitrary kind.

> x <- list(1:3, letters[1:3], is.numeric)

> x

[[1]]

[1] 1 2 3

[[2]]

[1] "a" "b" "c"

[[3]]

function (x) .Primitive("is.numeric")

> names(x) <- c("numbers", "letters", "function")

> x[1:2]

$numbers

[1] 1 2 3

$letters

[1] "a" "b" "c"

> x[1]

$numbers

[1] 1 2 3

> x[[1]]

[1] 1 2 3

See how subsetting creates another list. To get to the actual content of the first element, you need
double brackets [[. The distinction between [ and [[ is critical to understand.

You can use $ on a named list. However, R has something called “partial” matching for $:
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> x$letters

[1] "a" "b" "c"

> x["letters"]

$letters

[1] "a" "b" "c"

> x$let

[1] "a" "b" "c"

> x["let"]

$<NA>

NULL

Trick: sometimes you want a list where each element is a single number. Use as.list:

> as.list(1:3)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

> list(1:3)

[[1]]

[1] 1 2 3

lapply and sapply

It is quite common to have a list where each element is of the same kind, for example a numeric

vector. You can apply a function to each element in the list by using lapply(); this returns another
list which is named if the input is.

> x <- list(a = rnorm(3), b = rnorm(3))

> lapply(x, mean)

$a

[1] -0.5085716

$b

[1] 0.3014588

If the output of the function is of the same kind, you can simplify the output using sapply (simplify
apply). This is particularly useful if the function in question returns a single number.
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> sapply(x, mean)

a b

-0.5085716 0.3014588

4.6 Data frames

data.frame are fundamental to data analysis. They look like matrices, but each column can be a
separate type, so you can mix and match different data types. They are required to have unique
column and row names. If no rowname is given, itâ€™ll use 1:nrow.

> x <- data.frame(sex = c("M", "M", "F"), age = c(32,34,29))

> x

sex age

1 M 32

2 M 34

3 F 29

You access columns by $ or [[:

> x$sex

[1] M M F

Levels: F M

> x[["sex"]]

[1] M M F

Levels: F M

Note how sexwas converted into a factor. This is a frequent source of errors, so much that I highly
encourage users to make sure they never have factors in their data.frames. This conversion can be
disabled by stringsAsfactors=FALSE:

> x <- data.frame(sex = c("M", "M", "F"), age = c(32,34,29), stringsAsFactors = \

FALSE)

> x$sex

[1] "M" "M" "F"

Behind the scenes, a data.frame is really a list. Why does this matter? Well, for one, it allows you
to use lapply and sapply across the columns:
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> sapply(x, class)

sex age

"character" "numeric"

4.7 Conversion

We often have to convert R objects from one type to another. For basic R types (as described above),
you have the as.XX family of functions, with XX being all the types of objects listed above.

> x

sex age

1 M 32

2 M 34

3 F 29

> as.matrix(x)

sex age

[1,] "M" "32"

[2,] "M" "34"

[3,] "F" "29"

> as.list(x)

$sex

[1] "M" "M" "F"

$age

[1] 32 34 29

When we convert the data.frame to a matrix it becomes a character matrix, because there is a
character column and this is the only way to keep the contents.

For more “complicated” objects there is a suite of as() functions, which you use as follows

> library(methods)

> as(x, "matrix")

sex age

[1,] "M" "32"

[2,] "M" "34"

[3,] "F" "29"

This is how you convert most Bioconductor objects.
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4.8 Other Resources

“An Introduction to R” ships with R and can also be access on the web (HTML³ | PDF⁴). This
introduction contains a lot of useful material but it is written very terse; you will need to pay close
attention to the details. It is useful to re-read this introduction after you have used R for a while;
you are likely to learn new details you had missed at first.

³https://cran.r-project.org/doc/manuals/r-release/R-intro.html
⁴https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf


5. IRanges - Basic Usage
Watch a video¹ of this chapter.

5.1 Dependencies

This document has the following dependencies:

> library(IRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("IRanges"))

5.2 Overview

A surprising amount of objects/tasks in computational biology can be formulated in terms of integer
intervals, manipulation of integer intervals and overlap of integer intervals.

Objects: A transcript (a union of integer intervals), a collection of SNPs (intervals of width 1),
transcription factor binding sites, a collection of aligned short reads.

Tasks: Which transcription factor binding sites hit the promoter of genes (overlap between two sets
of intervals), which SNPs hit a collection of exons, which short reads hit a predetermined set of
exons.

IRanges are collections of integer intervals. GRanges are like IRanges, but with an associated
chromosome and strand, taking care of some book keeping.

Here we discuss IRanges, which provides the foundation for GRanges. This package implements
(amongst other things) an algebra for handling integer intervals.

5.3 Basic IRanges

Specify IRanges by 2 of start, end, width (SEW).

¹https://youtu.be/YB2WRH3sFHs
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> ir1 <- IRanges(start = c(1,3,5), end = c(3,5,7))

> ir1

IRanges object with 3 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 3 3

[2] 3 5 3

[3] 5 7 3

> ir2 <- IRanges(start = c(1,3,5), width = 3)

> all.equal(ir1, ir2)

[1] TRUE

An IRanges consist of separate intervals; each interval is called a range. So ir1 above contains 3
ranges.

Assessor methods: start(), end(), width() and also replacement methods.

> start(ir1)

[1] 1 3 5

> width(ir2) <- 1

> ir2

IRanges object with 3 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 1 1

[2] 3 3 1

[3] 5 5 1

They may have names

> names(ir1) <- paste("A", 1:3, sep = "")

> ir1

IRanges object with 3 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

A1 1 3 3

A2 3 5 3

A3 5 7 3

They have a single dimension
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> dim(ir1)

NULL

> length(ir1)

[1] 3

Because of this, subsetting works like a vector

> ir1[1]

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

A1 1 3 3

> ir1["A1"]

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

A1 1 3 3

Like vectors, you can concatenate two IRanges with the c() function

> c(ir1, ir2)

IRanges object with 6 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

A1 1 3 3

A2 3 5 3

A3 5 7 3

1 1 1

3 3 1

5 5 1

5.4 Normal IRanges

A normal IRanges is a minimal representation of the IRanges viewed as a set. Each integer only occur
in a single range and there are as few ranges as possible. In addition, it is ordered. Many functions
produce a normal IRanges. Created by reduce().
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An IRanges consisting of 4 ranges.

reduce() applied to the previous IRanges produces a normal IRanges.

> ir

IRanges object with 4 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 4 4

[2] 3 4 2

[3] 7 8 2

[4] 9 10 2

> reduce(ir)

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 4 4

[2] 7 10 4

Answers: “Given a set of overlapping exons, which bases belong to an exon?”
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5.5 Disjoin

From some perspective, disjoin() is the opposite of reduce(). An example explains better:

> disjoin(ir1)

An IRanges

disjoin() applied to the previous IRanges.

Answers: “Give a set of overlapping exons, which bases belong to the same set of exons?”

5.6 Manipulating IRanges, intra-range

“Intra-range” manipulations are manipulations where each original range gets mapped to a new
range.

Examples of these are: shift(), narrow(), flank(), resize(), restrict().

For example, resize() can be extremely useful. It has a fix argument controlling where the resizing
occurs from. Use fix="center" to resize around the center of the ranges; I use this a lot.
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> resize(ir, width = 1, fix = "start")

IRanges object with 4 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 1 1

[2] 3 3 1

[3] 7 7 1

[4] 9 9 1

> resize(ir, width = 1, fix = "center")

IRanges object with 4 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 2 2 1

[2] 3 3 1

[3] 7 7 1

[4] 9 9 1

The help page is ?"intra-range-methods" (note that there is both a help page in IRanges and
GenomicRanges).

5.7 Manipulating IRanges, as sets

Manipulating IRanges as sets means that we view each IRanges as a set of integers; individual
integers is either contained in one or more ranges or they are not. This is equivalent to calling
reduce() on the IRanges first.

Once this is done, we can use standard: union(), intersect(), setdiff(), gaps() between two
IRanges (which all returns normalized IRanges).

> ir1 <- IRanges(start = c(1, 3, 5), width = 1)

> ir2 <- IRanges(start = c(4, 5, 6), width = 1)

> union(ir1, ir2)

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 1 1

[2] 3 6 4

> intersect(ir1, ir2)

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 5 5 1

Because they return normalized IRanges, an alternative to union() is
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> reduce(c(ir1, ir2))

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 1 1

[2] 3 6 4

There is also an element-wise (pair-wise) version of these: punion(), pintersect(), psetdiff(),
pgap(); this is similar to say pmax from base R. In my experience, these functions are seldom used.

5.8 Finding Overlaps

Finding (pairwise) overlaps between two IRanges is done by findOverlaps(). This function is very
important and amazingly fast!

> ir1 <- IRanges(start = c(1,4,8), end = c(3,7,10))

> ir2 <- IRanges(start = c(3,4), width = 3)

> ov <- findOverlaps(ir1, ir2)

> ov

Hits object with 3 hits and 0 metadata columns:

queryHits subjectHits

<integer> <integer>

[1] 1 1

[2] 2 1

[3] 2 2

-------

queryLength: 3 / subjectLength: 2

It returns a Hits object which describes the relationship between the two IRanges. This object is
basically a two-column matrix of indicies into the two IRanges.

The two columns of the hits object can be accessed by queryHits() and subjectHits() (often used
with unique()).

For example, the first row of the matrix describes that the first range of ir1 overlaps with the first
range of ir2. Or said differently, they have a non-empty intersection:
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> intersect(ir1[queryHits(ov)[1]],

+ ir2[subjectHits(ov)[2]])

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 3 3 1

The elements of unique(queryHits) gives you the indices of the query ranges which actually had
an overlap; you need unique because a query range may overlap multiple subject ranges.

> queryHits(ov)

[1] 1 2 2

> unique(queryHits(ov))

[1] 1 2

The list of arguments to findOverlaps() is long; there are a few hidden treasures here. For example,
you can ask to only get an overlap if two ranges overlap by a certain number of bases.

> args(findOverlaps)

function (query, subject, maxgap = 0L, minoverlap = 1L, type = c("any",

"start", "end", "within", "equal"), select = c("all", "first",

"last", "arbitrary"), ...)

NULL

5.9 Counting Overlaps

For efficiency, there is also countOverlaps(), which just returns the number of overlaps. This
function is more efficient than findOverlaps() because it does not have to keep track of which
ranges overlap, just the number of overlaps.

> countOverlaps(ir1, ir2)

[1] 1 2 0

5.10 Finding nearest IRanges

Sometimes you have two sets of IRanges and you need to knowwhich ones are closest to each other.
Functions for this include nearest(), precede(), follow(). Watch out for ties!
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> ir1

IRanges object with 3 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 3 3

[2] 4 7 4

[3] 8 10 3

> ir2

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 3 5 3

[2] 4 6 3

> nearest(ir1, ir2)

[1] 1 1 2

5.11 Other Resources

The vignette titled “An Introduction to IRanges” from the IRanges package².

²http://bioconductor.org/packages/IRanges

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges


6. GenomicRanges - GRanges
Watch a video¹ of this chapter.

6.1 Dependencies

This document has the following dependencies:

> library(GenomicRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomicRanges"))

6.2 GRanges

GRanges are like IRanges with strand and chromosome. Strand can be +, - and *. The value *

indicates ‘unknown strand’ or ‘unstranded’. This value usually gets treated as a third strand, which
is sometimes confusing to users (examples below).

They get created with the GRanges constructor:

> gr <- GRanges(seqnames = "chr1", strand = c("+", "-", "+"),

+ ranges = IRanges(start = c(1,3,5), width = 3))

>

Natural accessor functions: strand(), seqnames(), ranges(), start(), end(), width().

Because the have strand, we now have operations which are relative to the direction of transcription
(upstream(), downstream()):

¹https://youtu.be/et3zeBXnpdc
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> flank(gr, 2, start = FALSE)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [4, 5] +

[2] chr1 [1, 2] -

[3] chr1 [8, 9] +

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

6.3 GRanges, seqinfo

GRanges operate within a universe of sequences (chromosomes/contigs) and their lengths.

This is described through seqinfo:

> seqinfo(gr)

Seqinfo object with 1 sequence from an unspecified genome; no seqlengths:

seqnames seqlengths isCircular genome

chr1 NA NA <NA>

> seqlengths(gr) <- c("chr1" = 10)

> seqinfo(gr)

Seqinfo object with 1 sequence from an unspecified genome:

seqnames seqlengths isCircular genome

chr1 10 NA <NA>

> seqlevels(gr)

[1] "chr1"

> seqlengths(gr)

chr1

10

Especially the length of the chromosomes are used by some functions. For example gaps() return
the stretches of the genome not covered by the GRanges.
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> gaps(gr)

GRanges object with 5 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [4, 4] +

[2] chr1 [8, 10] +

[3] chr1 [1, 2] -

[4] chr1 [6, 10] -

[5] chr1 [1, 10] *

-------

seqinfo: 1 sequence from an unspecified genome

In this example, we know that the last gap stops at 10, because that is the length of the chromosome.
Note how a range on the * strand appears in the result.

Let us expand the GRanges with another chromosome

> seqlevels(gr) <- c("chr1", "chr2")

> seqnames(gr) <- c("chr1", "chr2", "chr1")

When you sort() a GRanges, the sorting order of the chromosomes is determined by their order in
seqlevel. This is nice if you want the sorting “chr1”, “chr2”, …, “chr10”, …

> sort(gr)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 3] +

[2] chr1 [5, 7] +

[3] chr2 [3, 5] -

-------

seqinfo: 2 sequences from an unspecified genome

> seqlevels(gr) <- c("chr2", "chr1")

> sort(gr)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 [3, 5] -

[2] chr1 [1, 3] +

[3] chr1 [5, 7] +

-------

seqinfo: 2 sequences from an unspecified genome

You can associate a genome with a GRanges.
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> genome(gr) <- "hg19"

> gr

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 3] +

[2] chr2 [3, 5] -

[3] chr1 [5, 7] +

-------

seqinfo: 2 sequences from hg19 genome

This becomes valuable when you deal with data from different genome versions (as we all do),
because it allows R to throw an error when you compare two GRanges from different genomes, like

> gr2 <- gr

> genome(gr2) <- "hg18"

> findOverlaps(gr, gr2)

Error in mergeNamedAtomicVectors(genome(x), genome(y), what = c("sequence", : se\

quences chr2, chr1 have incompatible genomes:

- in 'x': hg19, hg19

- in 'y': hg18, hg18

The fact that each sequence may have its own genome is more esoteric. One usecase is for
experiments where the experimenter have spiked in sequences exogenous to the original organism.

6.4 Other Resources

• The vignettes from the GenomicRanges package².
• The package is described in a paper in PLOS Computational Biology (Lawrence et al. 2013).

6.5 References

Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gen-
tleman, Martin T Morgan, and Vincent J Carey. 2013. “Software for computing and annotating
genomic ranges.” PLoS Computational Biology 9 (8): e1003118. doi:10.1371/journal.pcbi.1003118.

²http://bioconductor.org/packages/GenomicRanges

http://bioconductor.org/packages/GenomicRanges
https://doi.org/10.1371/journal.pcbi.1003118
http://bioconductor.org/packages/GenomicRanges


7. GenomicRanges - Basic GRanges
Usage

Watch a video¹ of this chapter.

7.1 Dependencies

This document has the following dependencies:

> library(GenomicRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomicRanges"))

7.2 DataFrame

The S4Vectors package introduced the DataFrame class. This class is very similar to the base
data.frame class from R, but it allows columns of any class, provided a number of required methods
are supported. For example, DataFrame can have IRanges as columns, unlike data.frame:

> ir <- IRanges(start = 1:2, width = 3)

> df1 <- DataFrame(iranges = ir)

> df1

DataFrame with 2 rows and 1 column

iranges

<IRanges>

1 [1, 3]

2 [2, 4]

> df1$iranges

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

¹https://youtu.be/dxoIvuRLGuk
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[1] 1 3 3

[2] 2 4 3

> df2 <- data.frame(iranges = ir)

> df2

iranges.start iranges.end iranges.width

1 1 3 3

2 2 4 3

In the data.frame case, the IRanges gives rise to 4 columns, whereas it is a single column when a
DataFrame is used.

Think of this as an expanded and more versatile class.

7.3 GRanges, metadata

GRanges (unlike IRanges) may have associated metadata. This is immensely useful. The formal way
to access and set this metadata is through values or elementMetadata or mcols, like

> gr <- GRanges(seqnames = "chr1", strand = c("+", "-", "+"),

+ ranges = IRanges(start = c(1,3,5), width = 3))

> values(gr) <- DataFrame(score = c(0.1, 0.5, 0.3))

> gr

GRanges object with 3 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

[1] chr1 [1, 3] + | 0.1

[2] chr1 [3, 5] - | 0.5

[3] chr1 [5, 7] + | 0.3

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

A much easier way to set and access metadata is through the $ operator
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> gr$score

[1] 0.1 0.5 0.3

> gr$score2 = gr$score * 0.2

> gr

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score score2

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [1, 3] + | 0.1 0.02

[2] chr1 [3, 5] - | 0.5 0.1

[3] chr1 [5, 7] + | 0.3 0.06

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

7.4 findOverlaps

findOverlaps works exactly as for IRanges. But the strand information can be confusing. Let us
make an example

> gr2 <- GRanges(seqnames = c("chr1", "chr2", "chr1"), strand = "*",

+ ranges = IRanges(start = c(1, 3, 5), width = 3))

> gr2

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 3] *

[2] chr2 [3, 5] *

[3] chr1 [5, 7] *

-------

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> gr

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score score2

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [1, 3] + | 0.1 0.02

[2] chr1 [3, 5] - | 0.5 0.1

[3] chr1 [5, 7] + | 0.3 0.06

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Note how the ranges in the two GRanges object are the same coordinates, they just have different
seqnames and strand. Let us try to do a standard findOverlaps:
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> findOverlaps(gr, gr2)

Hits object with 4 hits and 0 metadata columns:

queryHits subjectHits

<integer> <integer>

[1] 1 1

[2] 2 1

[3] 2 3

[4] 3 3

-------

queryLength: 3 / subjectLength: 3

Notice how the * strand overlaps both + and -. There is an argument ignore.strand to findOverlaps
which will … ignore the strand information (so + overlaps -). Several other functions in Genomi-

cRanges have an ignore.strand argument as well.

7.5 subsetByOverlaps

A common operation is to select only certain ranges from a GRanges which overlap something else.
Enter the convenience function subsetByOverlaps

> subsetByOverlaps(gr, gr2)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | score score2

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [1, 3] + | 0.1 0.02

[2] chr1 [3, 5] - | 0.5 0.1

[3] chr1 [5, 7] + | 0.3 0.06

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

7.6 makeGRangesFromDataFrame

A common situation is that you have data which looks like a GRanges but is really stored as a classic
data.frame, with chr, start etc. The makeGRangesFromDataFrame converts this data.frame into a
GRanges. An argument tells you whether you want to keep any additional columns.



GenomicRanges - Basic GRanges Usage 32

> df <- data.frame(chr = "chr1", start = 1:3, end = 4:6, score = 7:9)

> makeGRangesFromDataFrame(df)

GRanges object with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 4] *

[2] chr1 [2, 5] *

[3] chr1 [3, 6] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> makeGRangesFromDataFrame(df, keep.extra.columns = TRUE)

GRanges object with 3 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <integer>

[1] chr1 [1, 4] * | 7

[2] chr1 [2, 5] * | 8

[3] chr1 [3, 6] * | 9

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

7.7 Biology usecase I

Suppose we want to identify transcription factor (TF) binding sites that overlaps known SNPs.

Input objects are
snps: a GRanges (of width 1)
TF: a GRanges

pseudocode:

> findOverlaps(snps, TF)

(watch out for strand)

7.8 Biology usecase II

Suppose we have a set of differentially methylation regions (DMRs) (think genomic regions) and a
set of CpG Islands and we want to find all DMRs within 10kb of a CpG Island.

Input objects are
dmrs: a GRanges
islands: a GRanges

pseudocode:
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> big_islands <- resize(islands, width = 20000 + width(islands), fix = "center")

> findOverlaps(dmrs, big_islands)

(watch out for strand)

7.9 Other Resources

• The vignettes from the GenomicRanges package².
• The package is described in a paper in PLOS Computational Biology (Lawrence et al. 2013).

7.10 References

Lawrence, Michael, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gen-
tleman, Martin T Morgan, and Vincent J Carey. 2013. “Software for computing and annotating
genomic ranges.” PLoS Computational Biology 9 (8): e1003118. doi:10.1371/journal.pcbi.1003118.

²http://bioconductor.org/packages/GenomicRanges

http://bioconductor.org/packages/GenomicRanges
https://doi.org/10.1371/journal.pcbi.1003118
http://bioconductor.org/packages/GenomicRanges


8. GenomicRanges - More on seqinfo
Watch a video¹ of this chapter.

8.1 Dependencies

This document has the following dependencies:

> library(GenomeInfoDb)

> library(GenomicRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomeInfoDb", "GenomicRanges"))

8.2 Overview

The GRanges class contains seqinfo information about the length and the names of the chromo-
somes. Here we will briefly discuss strategies for harmonizing this information.

The GenomeInfoDb package addresses a seemingly small, but consistent problem: different online
resources uses different naming conventions for chromosomes. In more technical jargon, this
package helps keeping your seqinfo and seqlevels harmonized.

8.3 Drop and keep seqlevels

It is common towant to remove seqlevels from a GRanges object. Here are some equivalentmethods

¹https://youtu.be/nEJIvoUmuBM
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> gr <- GRanges(seqnames = c("chr1", "chr2"),

+ ranges = IRanges(start = 1:2, end = 4:5))

> seqlevels(gr, force=TRUE) <- "chr1"

> gr

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 4] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

In GenomeInfoDb (loaded when you load GenomicRanges) you find dropSeqlevels() and keepSe-

qlevels().

> gr <- GRanges(seqnames = c("chr1", "chr2"),

+ ranges = IRanges(start = 1:2, end = 4:5))

> dropSeqlevels(gr, "chr1")

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 [2, 5] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> keepSeqlevels(gr, "chr2")

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr2 [2, 5] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

You can also just get rid of weird looking chromosome names with keepStandardChromosomes().
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> gr <- GRanges(seqnames = c("chr1", "chrU345"),

+ ranges = IRanges(start = 1:2, end = 4:5))

> keepStandardChromosomes(gr)

GRanges object with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 4] *

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

8.4 Changing style

It is an inconvenient truth that different online resources uses different naming convention for
chromosomes. This can even be different from organism to organism. For example, for the fruitfly
(Drosophila Melanogaster) NCBI and Ensembl uses “2L” and UCSC uses “chr2L”. But NCBI and
Ensembl differs on some contigs: NCBI uses “Un” and Ensembl used “U”.

> gr <- GRanges(seqnames = "chr1", ranges = IRanges(start = 1:2, width = 2))

Let us remap

> newStyle <- mapSeqlevels(seqlevels(gr), "NCBI")

> gr <- renameSeqlevels(gr, newStyle)

This can in principle go wrong, if the original set of seqlevels are inconsistent (not a single style).

The GenomeInfoDb also contains information for dropping / keeping various classes of chromo-
somes:

8.5 Using information from BSgenome packages

BSgenome packages contains seqinfo on their genome objects. This contains seqlengths and other
information. An easy trick is to use these packages to correct your seqinfo information.

Hopefully, in Bioconductor 3.2 we will get support for seqlengths inGenomeInfoDb so we can avoid
using the big genome packages.

8.6 Other Resources

• The vignette from the GenomeInfoDb package².

²http://bioconductor.org/packages/GenomeInfoDb

http://bioconductor.org/packages/GenomeInfoDb
http://bioconductor.org/packages/GenomeInfoDb


9. AnnotationHub
Watch a video¹ of this chapter.

9.1 Dependencies

This document has the following dependencies:

> library(AnnotationHub)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("AnnotationHub"))

9.2 Overview

Annotation information is extremely important for putting your data into context. There are many
online resources for doing this, and many different databases organizes different information suing
different approaches.

There are multiple ways to access annotation information in Bioconductor.

Here we discuss a new way of doing so, through the packageAnnotationHub. This package provides
access to a ton of online resources through a unified interface. However, each data resource has its
own peculiarities, so a user still needs to understand what the different datasets are.

In a recent paper I was involved in (Hansen et al. 2014), I used AnnotationHub to interrogate my
data against all transcription factor data available through the ENCODE project. I managed to write
the code and conduct the analysis in the matter of a single evening, which I think is pretty awesome.

9.3 Usage

First we create an AnnotationHub instance. The first time you do this, it will create a local cache on
your system, so that repeat queries for the same information (even in different R sessions) will be
very fast.

¹https://youtu.be/bw55cuD6bqA
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> ah <- AnnotationHub()

> ah

As you can see, ah contains tons of information. The information content is constantly changing,
which is why there is a snapshotDate. While the object is big, it actually only contains pointers
to online information. Actually downloading all the resources available in an AnnotationHub is
prohibitive.

The object is organized as a vector, with single-dimension indexing. You can get information about
a single resource by indexing with a single [; using two brackets ([[) downloads the object:

> ah[1]

AnnotationHub with 1 record

# snapshotDate(): 2016-05-12

# names(): AH2

# $dataprovider: Ensembl

# $species: Ailuropoda melanoleuca

# $rdataclass: FaFile

# $title: Ailuropoda_melanoleuca.ailMel1.69.dna.toplevel.fa

# $description: FASTA DNA sequence for Ailuropoda melanoleuca

# $taxonomyid: 9646

# $genome: ailMel1

# $sourcetype: FASTA

# $sourceurl: ftp://ftp.ensembl.org/pub/release-69/fasta/ailuropoda_mel...

# $sourcelastmodifieddate: 2012-10-12

# $sourcesize: 693412448

# $tags: FASTA, ensembl, sequence

# retrieve record with 'object[["AH2"]]'

The way you use AnnotationHub is by using various tools to narrow down your hub to a single or
a small number of datasets. Then you download these datasets for your own usage.

Let us first explore some high-level features of the hub:

> unique(ah$dataprovider)

[1] "Ensembl"

[2] "EncodeDCC"

[3] "UCSC"

[4] "RefNet"

[5] "Inparanoid8"

[6] "NCBI"

[7] "NHLBI"

[8] "ChEA"
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[9] "Pazar"

[10] "NIH Pathway Interaction Database"

[11] "Haemcode"

[12] "GEO"

[13] "BroadInstitute"

[14] "ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/"

[15] "PRIDE"

[16] "Gencode"

[17] "dbSNP"

> unique(ah$rdataclass)

[1] "FaFile" "GRanges" "data.frame"

[4] "Inparanoid8Db" "OrgDb" "TwoBitFile"

[7] "ChainFile" "SQLiteConnection" "biopax"

[10] "BigWigFile" "ExpressionSet" "AAStringSet"

[13] "MSnSet" "mzRpwiz" "mzRident"

[16] "VcfFile"

(we will discuss many of these data classes in future sessions).

You can narrow down the hub by using one (or more) of the following strategies

• Use subset (or [) to do a specific subsetting operation.
• Use query to do a command-line search over the metadata of the hub.
• Use display to get a Shiny interface in a browser, so you can browse the object.

It is often useful to start with a very rough subsetting, for example to data from a specific species. The
subset function is useful for doing a standard R subsetting (the function also works on data.frames).

> ah <- subset(ah, species == "Homo sapiens")

> ah

AnnotationHub with 30411 records

# snapshotDate(): 2016-05-12

# $dataprovider: BroadInstitute, EncodeDCC, UCSC, Ensembl, Gencode, NIH...

# $species: Homo sapiens

# $rdataclass: GRanges, BigWigFile, ChainFile, FaFile, TwoBitFile, data...

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH133"]]'

title

AH133 | Homo_sapiens.GRCh37.69.cdna.all.fa

AH134 | Homo_sapiens.GRCh37.69.dna.toplevel.fa
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AH135 | Homo_sapiens.GRCh37.69.dna_rm.toplevel.fa

AH136 | Homo_sapiens.GRCh37.69.dna_sm.toplevel.fa

AH137 | Homo_sapiens.GRCh37.69.ncrna.fa

... ...

AH50558 | Homo_sapiens.GRCh38.cdna.all.2bit

AH50559 | Homo_sapiens.GRCh38.dna.primary_assembly.2bit

AH50560 | Homo_sapiens.GRCh38.dna_rm.primary_assembly.2bit

AH50561 | Homo_sapiens.GRCh38.dna_sm.primary_assembly.2bit

AH50562 | Homo_sapiens.GRCh38.ncrna.2bit

We can use query to search the hub. The (possible) drawback to query is that it searches over different
fields in the hub, so watch out with using a search term which is very non-specific. The query is a
regular expression, which by default is case-insensitive. Here we locate all datasets on theH3K4me3
histone modification (in H. sapiens because we selected this species above)

> query(ah, "H3K4me3")

AnnotationHub with 2308 records

# snapshotDate(): 2016-05-12

# $dataprovider: BroadInstitute, EncodeDCC, UCSC

# $species: Homo sapiens

# $rdataclass: GRanges, BigWigFile

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH706"]]'

title

AH706 | wgEncodeBroadHistoneA549H3k04me3Dex100nmPk

AH707 | wgEncodeBroadHistoneA549H3k04me3Etoh02Pk

AH730 | wgEncodeBroadHistoneDnd41H3k04me3Pk

AH742 | wgEncodeBroadHistoneGm12878H3k04me3StdPkV2

AH749 | wgEncodeBroadHistoneGm12878H3k4me3StdPk

... ...

AH46826 | UW.Fetal_Muscle_Leg.H3K4me3.H-24644.Histone.DS21536.gappedP...

AH46833 | UW.Fetal_Muscle_Trunk.H3K4me3.H-24851.Histone.DS23302.gappe...

AH46839 | UW.Fetal_Placenta.H3K4me3.H-24996.Histone.DS23300.gappedPea...

AH46845 | UW.Fetal_Stomach.H3K4me3.H-24639.Histone.DS22598.gappedPeak.gz

AH46851 | UW.Fetal_Thymus.H3K4me3.H-24644.Histone.DS21539.gappedPeak.gz

Another way of searching a hub is by using a browser. Notice how we assign the output of display
to make sure that we can capture our selection in the browser
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> hist <- display(ah)

display(ah)

9.4 Other Resources

• The AnnotationHub vignette from the AnnotationHub package².
• The Annotation Resources³ workflow on Bioconductor contains material on AnnotationHub.
• The BioC 2015 conference had a tutorial on AnnotationHub; material is available through the
course materials⁴ site.

9.5 References

Hansen, Kasper D, Sarven Sabunciyan, Ben Langmead, Noemi Nagy, Rebecca Curley, Georg Klein,
Eva Klein, Daniel Salamon, and Andrew P Feinberg. 2014. “Large-scale hypomethylated blocks
associated with Epstein-Barr virus-induced B-cell immortalization.” Genome Research 24 (2):
177â€“84. doi:10.1101/gr.157743.113.

²http://bioconductor.org/packages/AnnotationHub
³http://www.bioconductor.org/help/workflows/annotation/Annotation_Resources/
⁴http://www.bioconductor.org/help/course-materials/

http://bioconductor.org/packages/AnnotationHub
http://www.bioconductor.org/help/workflows/annotation/Annotation_Resources/
http://www.bioconductor.org/help/course-materials/
https://doi.org/10.1101/gr.157743.113
http://bioconductor.org/packages/AnnotationHub
http://www.bioconductor.org/help/workflows/annotation/Annotation_Resources/
http://www.bioconductor.org/help/course-materials/


10. Usecase - Basic GRanges and
AnnotationHub

Watch video 1¹ and video 2² of this chapter.

10.1 Dependencies

This document has the following dependencies:

> library(GenomicRanges)

> library(rtracklayer)

> library(AnnotationHub)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomicRanges", "rtracklayer", "AnnotationHub"))

10.2 Overview

We are going to use AnnotationHub and GenomicRanges to access ENCODE data on the H3K4me3
histone modification in a specific cell line. This histone modification is believed to mark active
promoters, and we are going to attempt to verify this statement. This involves

1. Getting the ENCODE histone data using AnnotationHub.
2. Getting promoters using AnnotationHub.
3. Comparing the histone data and promoters using findOverlaps in GenomicRanges.

10.3 Accomplishing our goals

First we use AnnotationHub to get data on homo sapiens.

¹https://youtu.be/5XVfLe8GtdI
²https://youtu.be/08r_l0x4L1k
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> ah <- AnnotationHub()

> ah <- subset(ah, species == "Homo sapiens")

Next we search for two keywords: H3K4me3 and Gm12878 which is the name of the cell line we
are interested in.

> qhs <- query(ah, "H3K4me3")

> qhs <- query(qhs, "Gm12878")

(Note: I like to keep my full annotation hub around, so I can re-do my query with a different search
term in case I end up with no hits. This is why I start assigning output to the qhs object and not ah).

Lets have a look

> qhs

AnnotationHub with 17 records

# snapshotDate(): 2016-05-12

# $dataprovider: BroadInstitute, EncodeDCC, UCSC

# $species: Homo sapiens

# $rdataclass: GRanges, BigWigFile

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH742"]]'

title

AH742 | wgEncodeBroadHistoneGm12878H3k04me3StdPkV2

AH749 | wgEncodeBroadHistoneGm12878H3k4me3StdPk

AH4472 | wgEncodeUwHistoneGm12878H3k4me3StdHotspotsRep1

AH4473 | wgEncodeUwHistoneGm12878H3k4me3StdHotspotsRep2

AH4474 | wgEncodeUwHistoneGm12878H3k4me3StdPkRep1

... ...

AH30747 | E116-H3K4me3.narrowPeak.gz

AH31690 | E116-H3K4me3.gappedPeak.gz

AH32869 | E116-H3K4me3.fc.signal.bigwig

AH33901 | E116-H3K4me3.pval.signal.bigwig

AH40294 | E116-H3K4me3.imputed.pval.signal.bigwig

Note how some of these hits don’t containGm12878 in their title. This is a useful illustration of how
query searches over multiple fields.

Lets have a closer look at this
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> qhs$title

[1] "wgEncodeBroadHistoneGm12878H3k04me3StdPkV2"

[2] "wgEncodeBroadHistoneGm12878H3k4me3StdPk"

[3] "wgEncodeUwHistoneGm12878H3k4me3StdHotspotsRep1"

[4] "wgEncodeUwHistoneGm12878H3k4me3StdHotspotsRep2"

[5] "wgEncodeUwHistoneGm12878H3k4me3StdPkRep1"

[6] "wgEncodeUwHistoneGm12878H3k4me3StdPkRep2"

[7] "wgEncodeBroadHistoneGm12878H3k4me3StdPk.broadPeak.gz"

[8] "wgEncodeUwHistoneGm12878H3k4me3StdHotspotsRep1.broadPeak.gz"

[9] "wgEncodeUwHistoneGm12878H3k4me3StdHotspotsRep2.broadPeak.gz"

[10] "wgEncodeUwHistoneGm12878H3k4me3StdPkRep1.narrowPeak.gz"

[11] "wgEncodeUwHistoneGm12878H3k4me3StdPkRep2.narrowPeak.gz"

[12] "E116-H3K4me3.broadPeak.gz"

[13] "E116-H3K4me3.narrowPeak.gz"

[14] "E116-H3K4me3.gappedPeak.gz"

[15] "E116-H3K4me3.fc.signal.bigwig"

[16] "E116-H3K4me3.pval.signal.bigwig"

[17] "E116-H3K4me3.imputed.pval.signal.bigwig"

> qhs$dataprovider

[1] "EncodeDCC" "EncodeDCC" "EncodeDCC" "EncodeDCC"

[5] "EncodeDCC" "EncodeDCC" "UCSC" "UCSC"

[9] "UCSC" "UCSC" "UCSC" "BroadInstitute"

[13] "BroadInstitute" "BroadInstitute" "BroadInstitute" "BroadInstitute"

[17] "BroadInstitute"

This result is a great illustration of the mess of public data. It turns our that E116 is a Roadmap
Epigenetics code for the Gm12878 cell line. The first 5 hits are from ENCODE, hosted at UCSC
and the last 6 hits are from Roadmap Epigenomics hosted at the Broad Institute. The Roadmap
data is different representation (and peaks) from the same underlying data. For the ENCODE data,
two different centers did the same experiment in the same cell line (Broad, hit 1) and (Uw, hit 2-5),
where Uw exposed data on two replicates (whatever that means). These two experiments seems to
be analyzed using different algorithms. It is even possible that the Roadmap data is from the same
raw data but just analyzed using different algorithms.

Lets take a look at the narrowPeak data:



Usecase - Basic GRanges and AnnotationHub 45

> gr1 <- subset(qhs, title == "wgEncodeUwHistoneGm12878H3k4me3StdPkRep1.narrowPe\

ak.gz")[[1]]

> gr1

GRanges object with 74470 ranges and 6 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr1 [713301, 713450] * | <NA> 0

[2] chr1 [713501, 713650] * | <NA> 0

[3] chr1 [713881, 714030] * | <NA> 0

[4] chr1 [714181, 714330] * | <NA> 0

[5] chr1 [714481, 714630] * | <NA> 0

... ... ... ... . ... ...

[74466] chrX [154492741, 154492890] * | <NA> 0

[74467] chrX [154493401, 154493550] * | <NA> 0

[74468] chrX [154560441, 154560590] * | <NA> 0

[74469] chrX [154562121, 154562270] * | <NA> 0

[74470] chrX [154842061, 154842210] * | <NA> 0

signalValue pValue qValue peak

<numeric> <numeric> <numeric> <numeric>

[1] 91 112.7680 -1 -1

[2] 25 26.7181 -1 -1

[3] 81 77.4798 -1 -1

[4] 32 106.5650 -1 -1

[5] 122 153.8320 -1 -1

... ... ... ... ...

[74466] 43 52.20930 -1 -1

[74467] 122 203.16800 -1 -1

[74468] 8 4.49236 -1 -1

[74469] 8 4.41978 -1 -1

[74470] 125 170.20100 -1 -1

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

> gr2 <- subset(qhs, title == "E116-H3K4me3.narrowPeak.gz")[[1]]

> gr2

GRanges object with 76188 ranges and 6 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr9 [123553464, 123557122] * | Rank_1 623

[2] chr3 [ 53196213, 53197995] * | Rank_2 622

[3] chr18 [ 9137534, 9142676] * | Rank_3 583

[4] chr11 [ 75110593, 75111943] * | Rank_4 548

[5] chr13 [ 41343776, 41345943] * | Rank_5 543
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... ... ... ... . ... ...

[76184] chr8 [ 98881411, 98881613] * | Rank_76184 20

[76185] chr9 [ 26812360, 26812533] * | Rank_76185 20

[76186] chrX [ 49019816, 49020016] * | Rank_76186 20

[76187] chrX [ 55932872, 55933045] * | Rank_76187 20

[76188] chr5 [118322235, 118322408] * | Rank_76188 20

signalValue pValue qValue peak

<numeric> <numeric> <numeric> <numeric>

[1] 23.09216 62.34132 52.85911 1736

[2] 24.91976 62.22835 52.85911 439

[3] 22.48938 58.39180 50.67302 442

[4] 22.47056 54.84914 47.77176 752

[5] 20.82804 54.31837 47.29083 909

... ... ... ... ...

[76184] 2.63471 2.02539 0.27458 94

[76185] 2.63471 2.02539 0.27458 32

[76186] 2.63471 2.02539 0.27458 82

[76187] 2.63471 2.02539 0.27458 41

[76188] 2.62206 2.00970 0.26790 52

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

(Note: I use this code, where I use title to refer to the different resources, to make this script more
robust over time).

This gives us two GRanges objects. Let us look at the distribution of peak widths:

> summary(width(gr1))

Min. 1st Qu. Median Mean 3rd Qu. Max.

150.0 150.0 150.0 150.3 150.0 410.0

> table(width(gr1))

150 210 230 250 270 290 390 410

74313 1 13 24 37 77 4 1

> summary(width(gr2))

Min. 1st Qu. Median Mean 3rd Qu. Max.

174 243 387 662 770 12340

Turns out that almost all peaks in gr1 have a width of 150bp, whereas gr2 is much more variable.
This is likely a product of the data processing algorithm; it can be very hard to figure out the details
of this.
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At this time one can spend a lot of time thinking about which datasets is best. We will avoid this
(important) discussion; since we referred to ENCODE data above (in the Overview section), we will
stick with gr1.

Now we need to get some promoter coordinates. There are multiple ways to do this in Bioconductor,
but here I will do a quick lookup for RefSeq in my annotation hub. RefSeq is a highly curated (aka
conservative) collection of genes.

Lets get started

> qhs <- query(ah, "RefSeq")

> qhs

AnnotationHub with 8 records

# snapshotDate(): 2016-05-12

# $dataprovider: UCSC

# $species: Homo sapiens

# $rdataclass: GRanges

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH5040"]]'

title

AH5040 | RefSeq Genes

AH5041 | Other RefSeq

AH5155 | RefSeq Genes

AH5156 | Other RefSeq

AH5306 | RefSeq Genes

AH5307 | Other RefSeq

AH5431 | RefSeq Genes

AH5432 | Other RefSeq

So this gives us multiple datasets, all with very similar names. We probably need the thing called
RefSeq Genes and not Other RefSeq but why are there multiple resources with the same name?

Turns out the answer makes sense:

> qhs$genome

[1] "hg19" "hg19" "hg18" "hg18" "hg17" "hg17" "hg16" "hg16"

This looks like the same resources, but in different genome builds. We have
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> genome(gr1)

chr1 chr2 chr3

"hg19" "hg19" "hg19"

chr4 chr5 chr6

"hg19" "hg19" "hg19"

chr7 chr8 chr9

"hg19" "hg19" "hg19"

chr10 chr11 chr12

"hg19" "hg19" "hg19"

chr13 chr14 chr15

"hg19" "hg19" "hg19"

chr16 chr17 chr18

"hg19" "hg19" "hg19"

chr19 chr20 chr21

"hg19" "hg19" "hg19"

chr22 chrX chrY

"hg19" "hg19" "hg19"

chrM chr1_gl000191_random chr1_gl000192_random

"hg19" "hg19" "hg19"

chr4_ctg9_hap1 chr4_gl000193_random chr4_gl000194_random

"hg19" "hg19" "hg19"

chr6_apd_hap1 chr6_cox_hap2 chr6_dbb_hap3

"hg19" "hg19" "hg19"

chr6_mann_hap4 chr6_mcf_hap5 chr6_qbl_hap6

"hg19" "hg19" "hg19"

chr6_ssto_hap7 chr7_gl000195_random chr8_gl000196_random

"hg19" "hg19" "hg19"

chr8_gl000197_random chr9_gl000198_random chr9_gl000199_random

"hg19" "hg19" "hg19"

chr9_gl000200_random chr9_gl000201_random chr11_gl000202_random

"hg19" "hg19" "hg19"

chr17_ctg5_hap1 chr17_gl000203_random chr17_gl000204_random

"hg19" "hg19" "hg19"

chr17_gl000205_random chr17_gl000206_random chr18_gl000207_random

"hg19" "hg19" "hg19"

chr19_gl000208_random chr19_gl000209_random chr21_gl000210_random

"hg19" "hg19" "hg19"

chrUn_gl000211 chrUn_gl000212 chrUn_gl000213

"hg19" "hg19" "hg19"

chrUn_gl000214 chrUn_gl000215 chrUn_gl000216

"hg19" "hg19" "hg19"

chrUn_gl000217 chrUn_gl000218 chrUn_gl000219
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"hg19" "hg19" "hg19"

chrUn_gl000220 chrUn_gl000221 chrUn_gl000222

"hg19" "hg19" "hg19"

chrUn_gl000223 chrUn_gl000224 chrUn_gl000225

"hg19" "hg19" "hg19"

chrUn_gl000226 chrUn_gl000227 chrUn_gl000228

"hg19" "hg19" "hg19"

chrUn_gl000229 chrUn_gl000230 chrUn_gl000231

"hg19" "hg19" "hg19"

chrUn_gl000232 chrUn_gl000233 chrUn_gl000234

"hg19" "hg19" "hg19"

chrUn_gl000235 chrUn_gl000236 chrUn_gl000237

"hg19" "hg19" "hg19"

chrUn_gl000238 chrUn_gl000239 chrUn_gl000240

"hg19" "hg19" "hg19"

chrUn_gl000241 chrUn_gl000242 chrUn_gl000243

"hg19" "hg19" "hg19"

chrUn_gl000244 chrUn_gl000245 chrUn_gl000246

"hg19" "hg19" "hg19"

chrUn_gl000247 chrUn_gl000248 chrUn_gl000249

"hg19" "hg19" "hg19"

so we know which one to get:

> refseq <- qhs[qhs$genome == "hg19" & qhs$title == "RefSeq Genes"]

> refseq

AnnotationHub with 1 record

# snapshotDate(): 2016-05-12

# names(): AH5040

# $dataprovider: UCSC

# $species: Homo sapiens

# $rdataclass: GRanges

# $title: RefSeq Genes

# $description: GRanges object from UCSC track 'RefSeq Genes'

# $taxonomyid: 9606

# $genome: hg19

# $sourcetype: UCSC track

# $sourceurl: rtracklayer://hgdownload.cse.ucsc.edu/goldenpath/hg19/dat...

# $sourcelastmodifieddate: NA

# $sourcesize: NA

# $tags: refGene, UCSC, track, Gene, Transcript, Annotation

# retrieve record with 'object[["AH5040"]]'

> refseq <- refseq[[1]] ## Downloads



Usecase - Basic GRanges and AnnotationHub 50

Lets have a look

> refseq

UCSC track 'refGene'

UCSCData object with 50066 ranges and 5 metadata columns:

seqnames ranges strand | name

<Rle> <IRanges> <Rle> | <character>

[1] chr1 [66999825, 67210768] + | NM_032291

[2] chr1 [ 8378145, 8404227] + | NM_001080397

[3] chr1 [48998527, 50489626] - | NM_032785

[4] chr1 [16767167, 16786584] + | NM_001145277

[5] chr1 [16767167, 16786584] + | NM_001145278

... ... ... ... . ...

[50062] chr19_gl000209_random [ 57209, 68123] + | NM_002255

[50063] chr19_gl000209_random [ 46646, 68123] + | NM_001258383

[50064] chr19_gl000209_random [ 98135, 112667] + | NM_012313

[50065] chr19_gl000209_random [ 70071, 84658] + | NM_001083539

[50066] chr19_gl000209_random [131433, 145745] + | NM_012312

score itemRgb thick

<numeric> <character> <IRanges>

[1] 0 <NA> [67000042, 67208778]

[2] 0 <NA> [ 8378169, 8404073]

[3] 0 <NA> [48999845, 50489468]

[4] 0 <NA> [16767257, 16785491]

[5] 0 <NA> [16767257, 16785385]

... ... ... ...

[50062] 0 <NA> [ 57249, 67717]

[50063] 0 <NA> [ 57132, 67717]

[50064] 0 <NA> [ 98146, 112480]

[50065] 0 <NA> [ 70108, 83979]

[50066] 0 <NA> [131468, 145120]

blocks

<IRangesList>

[1] [ 1, 227] [91706, 91769] [98929, 98953] ...

[2] [ 1, 102] [6222, 6642] [7214, 7306] ...

[3] [ 1, 1439] [2036, 2062] [6788, 6884] ...

[4] [ 1, 182] [2961, 3061] [7199, 7303] ...

[5] [ 1, 104] [2961, 3061] [7199, 7303] ...

... ...

[50062] [ 1, 80] [ 280, 315] [1182, 1466] ...

[50063] [ 1, 86] [10414, 10643] [10843, 10878] ...

[50064] [ 1, 46] [1523, 1557] [4002, 4301] ...

[50065] [ 1, 71] [1071, 1106] [1851, 2135] ...
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[50066] [ 1, 69] [ 862, 897] [3334, 3633] ...

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

Let us look at the number of isoforms per gene name:

> table(table(refseq$name))

1 2 3 4 5 6 7 8 9 10 12 13

45178 568 102 27 74 52 171 129 13 19 1 1

19

5

(the table(table()) construction may seems weird at first, but its a great way to get a quick
tabular summary of occurrences with the same name). This shows that almost all genes have a
single transcript, which reflects how conservative RefSeq is.

Notice that each transcript is a separate range. Therefore, each transcript is represented as the “outer”
coordinates of the gene; the ranges does not exclude introns. Because we got this from UCSC I
happen to know that the $blocksmetadata really contains the coordinates of the different exons. In
a later example we will introduce a gene representation where we keep track of exons, introns and
transcripts from the same gene, through something known as a TxDb (transcript database) object.

For now, we just need the promoters, so we don’t really care about introns. We need to keep track
of which strand each transcript is on, to get the transcription start site.

Or we could just use the convenience function promoters():

> promoters <- promoters(refseq)

> table(width(promoters))

2200

50066

> args(promoters)

NULL

There are many definitions of promoters based on transcription start site. The default in this function
is to use 2kb upstream and 200bp downstream of the start site. Let’s keep this.

Now we compute which promoters have a H3K4me3 peak in them:
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> ov <- findOverlaps(promoters, gr1)

> ov

Hits object with 46022 hits and 0 metadata columns:

queryHits subjectHits

<integer> <integer>

[1] 2 387

[2] 3 2523

[3] 4 774

[4] 5 774

[5] 6 1114

... ... ...

[46018] 47457 47491

[46019] 47459 47493

[46020] 47459 47494

[46021] 47460 47493

[46022] 47460 47494

-------

queryLength: 50066 / subjectLength: 74470

Let us compute how many percent of the peaks are in a promoter

> length(unique(queryHits(ov))) / length(gr1)

[1] 0.3333691

and how many percent of promoters have a peak in them

> length(unique(subjectHits(ov))) / length(promoters)

[1] 0.440878

My rule of thumb is that any cell type has at most 50% of genes expressed, which fits well with these
numbers. We also see that there are many H3K4me3 peaks which do not lie in a genic promoter.
This is actually expected.

Now, the overlap is non-empty, but is it interesting or “significant”. Answering this question
thoroughly requires thinking deeply about background distributions etc. We will avoid a careful
statistical approach to this question, and will instead do a few back-of-the-envelope calculations to
get a feel for it.

First we notice that both promoters and peaks are small compared to the size of the human genome:
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> sum(width(reduce(gr1))) / 10^6

[1] 11.19044

> sum(width(reduce(promoters))) / 10^6

[1] 64.3005

(result is in megabases; the human genome is 3000 megabases). Just this fact alone should convince
you that the overlap is highly unlikely happen purely by chance. Let us calculate the overlap in
megabases:

> sum(width(intersect(gr1, promoters))) / 10^6

[1] 0

That’s weird; why is the overlap empty when we know (using findOverlaps) that there is plenty of
overlap? Turns out the answer is strand. We need to ignore the strand when we do this calculation:

> sum(width(intersect(gr1, promoters, ignore.strand = TRUE))) / 10^6

[1] 3.019608

This brings us back to the question of the size of the promoter set above; this is also affected by
strand when there is a promoter on each strand which overlaps. Contrast

> sum(width(reduce(promoters))) / 10^6

[1] 64.3005

> sum(width(reduce(promoters, ignore.strand = TRUE))) / 10^6

[1] 62.27957

Strand can be troublesome!

Let us compute a small 2x2 matrix for which bases are in promoters and/or peaks:

> prom <- reduce(promoters, ignore.strand = TRUE)

> peaks <- reduce(gr1)

> both <- intersect(prom, peaks)

> only.prom <- setdiff(prom, both)

> only.peaks <- setdiff(peaks, both)

> overlapMat <- matrix(0,, ncol = 2, nrow = 2)

> colnames(overlapMat) <- c("in.peaks", "out.peaks")

> rownames(overlapMat) <- c("in.promoters", "out.promoter")

> overlapMat[1,1] <- sum(width(both))

> overlapMat[1,2] <- sum(width(only.prom))

> overlapMat[2,1] <- sum(width(only.peaks))
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> overlapMat[2,2] <- 3*10^9 - sum(overlapMat)

> round(overlapMat / 10^6, 2)

in.peaks out.peaks

in.promoters 3.02 59.26

out.promoter 8.17 2929.55

Here we have just used the genome size of 3 billion bases. This is not correct. There are many of
these bases which have not been sequenced and in addition, there are many bases which cannot be
mapped using short reads. This will reduce the genome size.

Nevertheless, let us compute an odds-ratio for this table:

> oddsRatio <- overlapMat[1,1] * overlapMat[2,2] / (overlapMat[2,1] * overlapMat\

[1,2])

> oddsRatio

[1] 18.26938

This odds-ratio shows an enrichment of peaks in promoters. We can get a feel for how much the
genome size (which we use incorrectly) affects our result by using a lower bound on the genome
size. Let us say 1.5 billion bases:

> overlapMat[2,2] <- 1.5*10^9

> oddsRatio <- overlapMat[1,1] * overlapMat[2,2] / (overlapMat[2,1] * overlapMat\

[1,2])

> oddsRatio

[1] 9.354362

The odds-ratio got smaller, but it is still bigger than 1.

Here we basically says that each base can be assigned to peaks or promoters independently, which
is definitely false. So there are many, many reasons why this calculation is not the “right” one.
Nevertheless, it appears that we have some enrichment, as expected.



11. Biostrings
Watch a video¹ of this chapter.

11.1 Dependencies

This document has the following dependencies:

> library(Biostrings)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("Biostrings"))

11.2 Overview

The Biostrings package contains classes and functions for representing biological strings such as
DNA, RNA and amino acids. In addition the package has functionality for pattern matching (short
read alignment) as well as a pairwise alignment function implementing Smith-Waterman local
alignments and Needleman-Wunsch global alignments used in classic sequence alignment (see
(Durbin et al. 1998) for a description of these algorithms). There are also functions for reading and
writing output such as FASTA files.

11.3 Representing sequences

There are two basic types of containers for representing strings. One container represents a single
string (say a chromosome or a single short read) and the other container represents a set of strings
(say a set of short reads). There are different classes intended to represent different types of sequences
such as DNA or RNA sequences.

¹https://youtu.be/lTXsZ1glvUY
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> dna1 <- DNAString("ACGT-N")

> dna1

6-letter "DNAString" instance

seq: ACGT-N

> DNAStringSet("ACG")

A DNAStringSet instance of length 1

width seq

[1] 3 ACG

> dna2 <- DNAStringSet(c("ACGT", "GTCA", "GCTA"))

> dna2

A DNAStringSet instance of length 3

width seq

[1] 4 ACGT

[2] 4 GTCA

[3] 4 GCTA

Note that the alphabet of a DNAString is an extended alphabet: - (for insertion) and N are allowed.
In fact, IUPAC codes are allowed (these codes represent different characters, for example the code
“M” represents either and “A” or a “C”). A list of IUPAC codes can be obtained by

> IUPAC_CODE_MAP

A C G T M R W S Y K

"A" "C" "G" "T" "AC" "AG" "AT" "CG" "CT" "GT"

V H D B N

"ACG" "ACT" "AGT" "CGT" "ACGT"

Indexing into a DNAString retrieves a subsequence (similar to the standard R function substr),
whereas indexing into a DNAStringSet gives you a subset of sequences.

> dna1[2:4]

3-letter "DNAString" instance

seq: CGT

> dna2[2:3]

A DNAStringSet instance of length 2

width seq

[1] 4 GTCA

[2] 4 GCTA

Note that [[ allows you to get a single element of a DNAStringSet as a DNAString. This is very
similar to [ and [[ for lists.
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> dna2[[2]]

4-letter "DNAString" instance

seq: GTCA

DNAStringSet objects can have names, like ordinary vectors

> names(dna2) <- paste0("seq", 1:3)

> dna2

A DNAStringSet instance of length 3

width seq names

[1] 4 ACGT seq1

[2] 4 GTCA seq2

[3] 4 GCTA seq3

The full set of string classes are

• DNAString[Set]: DNA sequences.
• RNAString[Set]: RNA sequences.
• AAString[Set]: Amino Acids sequences (protein).
• BString[Set]: “Big” sequences, using any kind of letter.

In addition you will often see references to XString[Set] in the documentation. An XString[Set]

is basically any of the above classes.

These classes seem very similar to standard characters() from base R, but there are important
differences. The differences are mostly about efficiencies when you deal with either (a) many
sequences or (b) very long strings (think whole chromosomes).

11.4 Basic functionality

Basic character functionality is supported, like

• length, names.
• c and rev (reverse the sequence).
• width, nchar (number of characters in each sequence).
• ==, duplicated, unique.
• as.charcater or toString: converts to a base character() vector.
• sort, order.
• chartr: convert some letters into other letters.
• subseq, subseq<-, extractAt, replaceAt.
• replaceLetterAt.

Examples
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> width(dna2)

[1] 4 4 4

> sort(dna2)

A DNAStringSet instance of length 3

width seq names

[1] 4 ACGT seq1

[2] 4 GCTA seq3

[3] 4 GTCA seq2

> rev(dna2)

A DNAStringSet instance of length 3

width seq names

[1] 4 GCTA seq3

[2] 4 GTCA seq2

[3] 4 ACGT seq1

> rev(dna1)

6-letter "DNAString" instance

seq: N-TGCA

Note that rev on a DNAStringSet just reverse the order of the elements, whereas rev on a DNAString
actually reverse the string.

11.5 Biological functionality

There are also functions which are related to the biological interpretation of the sequences, including

• reverse: reverse the sequence.
• complement, reverseComplement: (reverse) complement the sequence.
• translate: translate the DNA or RNA sequence into amino acids.

> translate(dna2)

A AAStringSet instance of length 3

width seq names

[1] 1 T seq1

[2] 1 V seq2

[3] 1 A seq3

> reverseComplement(dna1)

6-letter "DNAString" instance

seq: N-ACGT
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11.6 Counting letters

We very often want to count sequences in various ways. Examples include:

• Compute the GC content of a set of sequences.
• Compute the frequencies of dinucleotides in a set of sequences.
• Compute a position weight matrix from a set of aligned sequences.

There is a rich set of functions for doing this quickly.

• alphabetFrequency, letterFrequency: Compute the frequency of all characters (alphabetFrequency)
or only specific letters (letterFrequency).

• dinucleotideFrequency, trinucleotideFrequency, oligonucleotideFrequeny: compute fre-
quencies of dinucleotides (2 bases), trinucleotides (3 bases) and oligonucleotides (general
number of bases).

• letterFrequencyInSlidingView: letter frequencies, but in sliding views along the string.
• consensusMatrix: consensus matrix; almost a position weight matrix.

Letâ€™s look at some examples, note how the output expands to amatrix when you use the functions
on a DNAStringSet:

> alphabetFrequency(dna1)

A C G T M R W S Y K V H D B N - + .

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

> alphabetFrequency(dna2)

A C G T M R W S Y K V H D B N - + .

[1,] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2,] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> letterFrequency(dna2, "GC")

G|C

[1,] 2

[2,] 2

[3,] 2

> consensusMatrix(dna2, as.prob = TRUE)

[,1] [,2] [,3] [,4]

A 0.3333333 0.0000000 0.0000000 0.6666667

C 0.0000000 0.6666667 0.3333333 0.0000000

G 0.6666667 0.0000000 0.3333333 0.0000000

T 0.0000000 0.3333333 0.3333333 0.3333333
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M 0.0000000 0.0000000 0.0000000 0.0000000

R 0.0000000 0.0000000 0.0000000 0.0000000

W 0.0000000 0.0000000 0.0000000 0.0000000

S 0.0000000 0.0000000 0.0000000 0.0000000

Y 0.0000000 0.0000000 0.0000000 0.0000000

K 0.0000000 0.0000000 0.0000000 0.0000000

V 0.0000000 0.0000000 0.0000000 0.0000000

H 0.0000000 0.0000000 0.0000000 0.0000000

D 0.0000000 0.0000000 0.0000000 0.0000000

B 0.0000000 0.0000000 0.0000000 0.0000000

N 0.0000000 0.0000000 0.0000000 0.0000000

- 0.0000000 0.0000000 0.0000000 0.0000000

+ 0.0000000 0.0000000 0.0000000 0.0000000

. 0.0000000 0.0000000 0.0000000 0.0000000

(most functions allows the return of probabilities with as.prob = TRUE).

11.7 References

Durbin, Richard M, Sean R Eddy, Anders Krogh, Graeme Mitchison, and Sean R Eddy. 1998.
Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press.



12. BSgenome
Watch a video¹ of this chapter.

12.1 Dependencies

This document has the following dependencies:

> library(BSgenome)

> library(BSgenome.Scerevisiae.UCSC.sacCer2)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("BSgenome", "BSgenome.Scerevisiae.UCSC.sacCer2"))

12.2 Overview

The BSgenome package contains infrastructure for representing genome sequences in Bioconductor.

12.3 Genomes

The BSgenome package provides support for genomes. In Bioconductor, we have special classes for
genomes, because the chromosomes can get really big. For example, the human genome takes up
several GB of memory.

The available.genomes() function lists which genomes are currently available from from Bio-
conductor (it is possible to make your own genome package). Note that there are several so-called
“masked” genomes, where some parts of the genome are masked. We will avoid this subject for now.
We can grep() for known organisms.

¹https://youtu.be/cNJ2wbObRl8

61

https://youtu.be/cNJ2wbObRl8
https://youtu.be/cNJ2wbObRl8


BSgenome 62

> allgenomes <- available.genomes()

> grep("Hsapiens", allgenomes, value = TRUE)

[1] "BSgenome.Hsapiens.1000genomes.hs37d5"

[2] "BSgenome.Hsapiens.NCBI.GRCh38"

[3] "BSgenome.Hsapiens.UCSC.hg17"

[4] "BSgenome.Hsapiens.UCSC.hg17.masked"

[5] "BSgenome.Hsapiens.UCSC.hg18"

[6] "BSgenome.Hsapiens.UCSC.hg18.masked"

[7] "BSgenome.Hsapiens.UCSC.hg19"

[8] "BSgenome.Hsapiens.UCSC.hg19.masked"

[9] "BSgenome.Hsapiens.UCSC.hg38"

[10] "BSgenome.Hsapiens.UCSC.hg38.masked"

> grep("Scerevisiae", allgenomes, value = TRUE)

[1] "BSgenome.Scerevisiae.UCSC.sacCer1" "BSgenome.Scerevisiae.UCSC.sacCer2"

[3] "BSgenome.Scerevisiae.UCSC.sacCer3"

Let us load the latest yeast genome

> library(BSgenome.Scerevisiae.UCSC.sacCer2)

> Scerevisiae

Yeast genome:

# organism: Saccharomyces cerevisiae (Yeast)

# provider: UCSC

# provider version: sacCer2

# release date: June 2008

# release name: SGD June 2008 sequence

# 18 sequences:

# chrI chrII chrIII chrIV chrV chrVI chrVII chrVIII chrIX

# chrX chrXI chrXII chrXIII chrXIV chrXV chrXVI chrM 2micron

# (use 'seqnames()' to see all the sequence names, use the '$' or '[['

# operator to access a given sequence)

A BSgenome package contains a single object which is the second component of the name. At first,
nothing is loaded into memory, which makes it very fast. You can get the length and names of the
chromosomes without actually loading them.
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> seqlengths(Scerevisiae)

chrI chrII chrIII chrIV chrV chrVI chrVII chrVIII chrIX

230208 813178 316617 1531919 576869 270148 1090947 562643 439885

chrX chrXI chrXII chrXIII chrXIV chrXV chrXVI chrM 2micron

745742 666454 1078175 924429 784333 1091289 948062 85779 6318

> seqnames(Scerevisiae)

[1] "chrI" "chrII" "chrIII" "chrIV" "chrV" "chrVI" "chrVII"

[8] "chrVIII" "chrIX" "chrX" "chrXI" "chrXII" "chrXIII" "chrXIV"

[15] "chrXV" "chrXVI" "chrM" "2micron"

We load a chromosome by using the [[ or $ operators:

> Scerevisiae$chrI

230208-letter "DNAString" instance

seq: CCACACCACACCCACACACCCACACACCACACCA...GTGTGGGTGTGGTGTGGGTGTGGTGTGTGTGGG

We can now do things like compute the GC content of the first chromosome

> letterFrequency(Scerevisiae$chrI, "CG", as.prob = TRUE)

C|G

0.3927361

To iterate over chromosomes seems straightforward with lapply. However, this function may end
up using a lot of memory because the entire genome is loaded. Instead there is the bsapply function
which handles loading and unloading of different chromosomes. The interface to bsapply is weird at
first; you set up a BSparams object which contains which function you are using and which genome
you are using it on (and a bit more information). This paradigm is being used in other packages
these days, for example BiocParallel. An example will make this clear:

> param <- new("BSParams", X = Scerevisiae, FUN = letterFrequency)

> head(bsapply(param, letters = "GC"))

$chrI

G|C

90411

$chrII

G|C

311807

$chrIII

G|C
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121998

$chrIV

G|C

580699

$chrV

G|C

222141

$chrVI

G|C

104636

note how the additional argument letters to the letterFrequency function is given as an argument
to bsapply, not to the BSParams object. This gives us a list; you can simplify the output (like the
difference between lapply and sapply) by

> param <- new("BSParams", X = Scerevisiae, FUN = letterFrequency, simplify = TR\

UE)

> bsapply(param, letters = "GC")

chrI.G|C chrII.G|C chrIII.G|C chrIV.G|C chrV.G|C chrVI.G|C

90411 311807 121998 580699 222141 104636

chrVII.G|C chrVIII.G|C chrIX.G|C chrX.G|C chrXI.G|C chrXII.G|C

415227 216586 171122 286167 253728 414843

chrXIII.G|C chrXIV.G|C chrXV.G|C chrXVI.G|C chrM.G|C 2micron.G|C

353167 303042 416443 360871 14676 2463

Note how the mitochondria chromosome is very different. To conclude, the GC percentage of the
genome is

> sum(bsapply(param, letters = "GC")) / sum(seqlengths(Scerevisiae))

[1] 0.3814872



13. Biostrings - Matching
Watch a video¹ of this chapter.

13.1 Dependencies

This document has the following dependencies:

> library(Biostrings)

> library(BSgenome)

> library(BSgenome.Scerevisiae.UCSC.sacCer2)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("Biostrings", "BSgenome",

+ "BSgenome.Scerevisiae.UCSC.sacCer2", "AnnotationHub"))

13.2 Overview

We continue our treatment of Biostrings and BSgenome, focusing on searching the genome.

13.3 Pattern matching

We often want to find patterns in (long) sequences. Biostrings have a number of functions for doing
so

• matchPattern and vmatchPattern: match a single sequence against one sequence (matchPattern)
or more than one (vmatchPattern) sequences.

• matchPDict and vmatchPDict: match a (possibly large) set of sequences against one sequence
(matchPDict) or more than one (vmatchPDict) sequences.

¹https://youtu.be/wFfaF4M8sqM
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These functions allows a small set of mismatches and some small indels. The Dict term is used
because the function builds a “dictionary” over the sequences.

There are also functions with similar naming using count instead of match (eg. countPatterns).
These functions returns the number of matches instead of precise information about where the
matches occur.

In many ways, these functions are similar to using short read aligners like Bowtie. But these
functions are designed to be comprehensive (return all matches satisfying certain criteria). Having
this functionality available in Bioconductor can sometimes be very useful.

> dnaseq <- DNAString("ACGTACGT")

> matchPattern(dnaseq, Scerevisiae$chrI)

Views on a 230208-letter DNAString subject

subject: CCACACCACACCCACACACCCACACACCACAC...GTGGGTGTGGTGTGGGTGTGGTGTGTGTGGG

views:

start end width

[1] 57932 57939 8 [ACGTACGT]

> countPattern(dnaseq, Scerevisiae$chrI)

[1] 1

> vmatchPattern(dnaseq, Scerevisiae)

GRanges object with 170 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrI [ 57932, 57939] +

[2] chrI [ 57932, 57939] -

[3] chrII [ 49581, 49588] +

[4] chrII [411291, 411298] +

[5] chrII [491129, 491136] +

... ... ... ...

[166] chrXVI [195477, 195484] -

[167] chrXVI [683620, 683627] -

[168] chrXVI [837296, 837303] -

[169] chrXVI [906938, 906945] -

[170] chrXVI [943045, 943052] -

-------

seqinfo: 18 sequences from an unspecified genome

> head(vcountPattern(dnaseq, Scerevisiae))

seqname strand count

1 chrI + 1

2 chrI - 1

3 chrII + 4

4 chrII - 4
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5 chrIII + 3

6 chrIII - 3

See how we use vmatchPattern to examine across all chromosomes.

First, note how the return object of vmatchPattern is a GRanges given the exact information of
where the string matches. Note sequence we search for is its own reverse complement, so we get
hits on both strands (which makes sense). Obviously, not all sequences are like this

> dnaseq == reverseComplement(dnaseq)

[1] TRUE

Second, note how the return object of matchPattern looks like an IRanges but is really something
called a Views (see another session).

13.4 Specialized alignments

There are a number of other, specialized, alignment functions in Biostrings. They include

• matchPWM: a position weight matrix is a common way to represent for example a transcription
factor binding motif (think sequence logos). This function allows you to search for such motifs
in the genome.

• pairwiseAlignment: This function implements pairwise alignments using dynamic program-
ming; providing an interface to both the Smith-Waterman local alignment problem and the
Needleman-Wunsch global alignment problems, see a thorough description in (Durbin et al.
1998).

• trimLRpattern (trim left-right pattern): Takes a set of sequences and looks for whether they
start or end with a given (other sequence), for example a sequencing adapter. Used for
trimming reads based on adapter sequences.

For now, we will avoid further discussion of these functions.

One note: pairwiseAlignment allows you to do pairwise alignments ofmillions of short reads against
a single sequence, for example a gene or a transposable element. Few people use these algorithms for
short read data, because the algorithms scale badly with the length of the sequence (ie. the genome),
but they work fine for millions of reads as long as the reference sequence is short. In my opinion
this approach might be very fruitful if you are particular interested in high-quality alignments to a
specific small gene or region of the genome.

13.5 References

Durbin, Richard M, Sean R Eddy, Anders Krogh, Graeme Mitchison, and Sean R Eddy. 1998.
Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge
University Press.



14. BSgenome - Views
Watch a video¹ of this chapter.

14.1 Dependencies

This document has the following dependencies:

> library(BSgenome)

> library(BSgenome.Scerevisiae.UCSC.sacCer2)

> library(AnnotationHub)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("BSgenome",

+ "BSgenome.Scerevisiae.UCSC.sacCer2", "AnnotationHub"))

14.2 Overview

We continue our treatment of Biostrings and BSgenome

14.3 Views

Views are used when you have a single big object (think chromosome or other massive dataset) and
you need to deal with (many) subsets of this object. Views are not restricted to genome sequences;
we will discuss Views on other types of objects in a different session.

Technically, a Views is like an IRanges couple with a pointer to the massive object. The IRanges

contains the indexes. Let’s look at matchPattern again:

¹https://youtu.be/fPBxqAPXQCE
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> library(BSgenome.Scerevisiae.UCSC.sacCer2)

> dnaseq <- DNAString("ACGTACGT")

> vi <- matchPattern(dnaseq, Scerevisiae$chrI)

> vi

Views on a 230208-letter DNAString subject

subject: CCACACCACACCCACACACCCACACACCACAC...GTGGGTGTGGTGTGGGTGTGGTGTGTGTGGG

views:

start end width

[1] 57932 57939 8 [ACGTACGT]

We can get the IRanges component by

> ranges(vi)

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 57932 57939 8

The IRanges gives us indexes into the underlying subject (here chromosome I). To be clear, compare
these two:

> vi

Views on a 230208-letter DNAString subject

subject: CCACACCACACCCACACACCCACACACCACAC...GTGGGTGTGGTGTGGGTGTGGTGTGTGTGGG

views:

start end width

[1] 57932 57939 8 [ACGTACGT]

> Scerevisiae$chrI[ start(vi):end(vi) ]

8-letter "DNAString" instance

seq: ACGTACGT

The Views object also look a bit like a DNAStringSet; we can do things like

> alphabetFrequency(vi)

A C G T M R W S Y K V H D B N - + .

[1,] 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The advantage of Views is that they don’t duplicate the sequence information from the subject; all
they keep track of are indexes into the subject (stored as IRanges). This makes it very (1) fast, (2)
low-memory and makes it possible to do things like
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> shift(vi, 10)

Views on a 230208-letter DNAString subject

subject: CCACACCACACCCACACACCCACACACCACAC...GTGGGTGTGGTGTGGGTGTGGTGTGTGTGGG

views:

start end width

[1] 57942 57949 8 [AAGCTTTG]

where we now get the sequence 10 bases next to the original match. This could not be done if all we
had were the bases of the original subsequence.

Views are especially powerful when there are many of them. A usecase I often have are the set of
all exons (or promoters) of all genes in the genome. You can use GRanges as Views as well. Lets look
at the hits from vmatchPattern.

> gr <- vmatchPattern(dnaseq, Scerevisiae)

> vi2 <- Views(Scerevisiae, gr)

Now, let us do something with this. First let us get gene coordinates from AnnotationHub.

> ahub <- AnnotationHub()

> qh <- query(ahub, c("sacCer2", "genes"))

> qh

AnnotationHub with 2 records

# snapshotDate(): 2016-05-12

# $dataprovider: UCSC

# $species: Saccharomyces cerevisiae

# $rdataclass: GRanges

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH7048"]]'

title

AH7048 | SGD Genes

AH7049 | Ensembl Genes

> genes <- qh[[which(qh$title == "SGD Genes")]]

> genes

GRanges object with 6717 ranges and 5 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chrI [130802, 131986] + | YAL012W 0

[2] chrI [ 335, 649] + | YAL069W 0

[3] chrI [ 538, 792] + | YAL068W-A 0
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[4] chrI [ 1807, 2169] - | YAL068C 0

[5] chrI [ 2480, 2707] + | YAL067W-A 0

... ... ... ... . ... ...

[6713] chrXIII [923492, 923800] - | YMR326C 0

[6714] 2micron [ 252, 1523] + | R0010W 0

[6715] 2micron [ 1887, 3008] - | R0020C 0

[6716] 2micron [ 3271, 3816] + | R0030W 0

[6717] 2micron [ 5308, 6198] - | R0040C 0

itemRgb thick blocks

<character> <IRanges> <IRangesList>

[1] <NA> [130802, 131986] [1, 1185]

[2] <NA> [ 335, 649] [1, 315]

[3] <NA> [ 538, 792] [1, 255]

[4] <NA> [ 1807, 2169] [1, 363]

[5] <NA> [ 2480, 2707] [1, 228]

... ... ... ...

[6713] <NA> [923492, 923800] [1, 309]

[6714] <NA> [ 252, 1523] [1, 1272]

[6715] <NA> [ 1887, 3008] [1, 1122]

[6716] <NA> [ 3271, 3816] [1, 546]

[6717] <NA> [ 5308, 6198] [1, 891]

-------

seqinfo: 18 sequences (2 circular) from sacCer2 genome

Let us compute the GC content of all promoters in the yeast genome.

> prom <- promoters(genes)

> head(prom, n = 3)

GRanges object with 3 ranges and 5 metadata columns:

seqnames ranges strand | name score itemRgb

<Rle> <IRanges> <Rle> | <character> <numeric> <character>

[1] chrI [128802, 131001] + | YAL012W 0 <NA>

[2] chrI [ -1665, 534] + | YAL069W 0 <NA>

[3] chrI [ -1462, 737] + | YAL068W-A 0 <NA>

thick blocks

<IRanges> <IRangesList>

[1] [130802, 131986] [1, 1185]

[2] [ 335, 649] [1, 315]

[3] [ 538, 792] [1, 255]

-------

seqinfo: 18 sequences (2 circular) from sacCer2 genome
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We get a warning that some of these promoters are out-of-band (see the the second and third element
in the prom object; they have negative values for their ranges). We clean it up and continue

> prom <- trim(prom)

> promViews <- Views(Scerevisiae, prom)

> gcProm <- letterFrequency(promViews, "GC", as.prob = TRUE)

> head(gcProm)

G|C

[1,] 0.4668182

[2,] 0.4868914

[3,] 0.4572592

[4,] 0.3731818

[5,] 0.3859091

[6,] 0.3309091

In the previous Biostrings session we computed the GC content of the yeast genome. Let us do it
again, briefly

> params <- new("BSParams", X = Scerevisiae, FUN = letterFrequency, simplify = T\

RUE)

> gccontent <- bsapply(params, letters = "GC")

> gcPercentage <- sum(gccontent) / sum(seqlengths(Scerevisiae))

> gcPercentage

[1] 0.3814872

Let us compare this genome percentage to the distribution of GC content for promoters

> plot(density(gcProm))

> abline(v = gcPercentage, col = "red")
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The distribution of GC content of promoters.

At first glance, the GC content of the promoters is not very different from the genome-wide GC
content (perhaps shifted a bit to the right).



15. GenomicRanges - Rle
Watch a video¹ of this chapter.

15.1 Dependencies

This document has the following dependencies:

> library(GenomicRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomicRanges"))

15.2 Overview

In this session we will discuss a data representation class called Rle (run length encoding). This class
is great for representation genome-wide sequence coverage.

15.3 Coverage

In high-throughput sequencing, coverage is the number of reads overlapping each base. In other
words, it associates a number (the number of reads) to every base in the genome.

This is a fundamental quantity for many high-throughout sequencing analyses. For variant calling
(DNA sequencing) it tells you how much power (information) you have to call a variant at a given
location. For ChIP sequencing it is the primary signal; areas with high coverage are thought to be
enriched for a given protein.

A file format which is often used to represent coverage data is Wig or the modern version BigWig.

¹https://youtu.be/w7ZPnO-jB9o
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15.4 Rle

An Rle (run-length-encoded) vector is a specific representation of a vector. The IRanges package
implements support for this class. Watch out: there is also a base R class called rle which has much
less functionality.

The run-length-encoded representation of a vector, represents the vector as a set of distinct runs
with their own value. Let us take an example

> rl <- Rle(c(1,1,1,1,2,2,3,3,2,2))

> rl

numeric-Rle of length 10 with 4 runs

Lengths: 4 2 2 2

Values : 1 2 3 2

> runLength(rl)

[1] 4 2 2 2

> runValue(rl)

[1] 1 2 3 2

> as.numeric(rl)

[1] 1 1 1 1 2 2 3 3 2 2

Note the accessor functions runLength() and runValue().

This is a very efficient representation if

• the vector is very long
• there are a lot of consecutive elements with the same value

This is especially useful for genomic data which is either piecewise constant, or where most of the
genome is not covered (eg. RNA sequencing in mammals).

In many ways Rles function as normal vectors, you can do arithmetic with them, transform them
etc. using standard R functions like + and log2.

There are also RleListwhich is a list of Rles. This class is used to represent a genome wide coverage
track where each element of the list is a different chromosome.

15.5 Useful functions for Rle

A standard usecase is that you have a number of regions (say IRanges) and youwant to do something
to your Rle over each of these regions. Enter aggregate().
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> ir <- IRanges(start = c(2,6), width = 2)

> aggregate(rl, ir, FUN = mean)

[1] 1.0 2.5

It is also possible to covert an IRanges to a Rle by the coverage() function. This counts, for each
integer, how many ranges overlap the integer.

> ir <- IRanges(start = 1:10, width = 3)

> rl <- coverage(ir)

> rl

integer-Rle of length 12 with 5 runs

Lengths: 1 1 8 1 1

Values : 1 2 3 2 1

You can select high coverage regions by the slice() function:

> slice(rl, 2)

Views on a 12-length Rle subject

views:

start end width

[1] 2 11 10 [2 3 3 3 3 3 3 3 3 2]

This outputs a Views object, see next section.

15.6 Views and Rles

In the sessions on the Biostrings package we learned about Views on genomes. Views can also be
instantiated on Rles.

> vi <- Views(rl, start = c(3,7), width = 3)

> vi

Views on a 12-length Rle subject

views:

start end width

[1] 3 5 3 [3 3 3]

[2] 7 9 3 [3 3 3]

with Views you can now (again) apply functions:
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> mean(vi)

[1] 3 3

This is very similar to using aggregate() described above.

15.7 RleList

An RleList is simply a list of Rle. It is similar to a GRangesList in concept.

15.8 Rles and GRanges

Rleâ€™s can also be constructed from GRanges.

This often involves RleList where each element of the list is a chromosome. Surprisingly, we do
not yet have an RleList type structure which also contains information about say the length of the
different chromosomes.

Let us see some examples

> gr <- GRanges(seqnames = "chr1", ranges = IRanges(start = 1:10, width = 3))

> rl <- coverage(gr)

> rl

RleList of length 1

$chr1

integer-Rle of length 12 with 5 runs

Lengths: 1 1 8 1 1

Values : 1 2 3 2 1

Let us consider a GRanges which we want to use to index into the Rle:

> grView <- GRanges("chr1", ranges = IRanges(start = c(2,5), end = c(3,6)))

We can subset directly into the Rle by
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> rl[grView]

RleList of length 2

$chr1

integer-Rle of length 2 with 2 runs

Lengths: 1 1

Values : 2 3

$chr1

integer-Rle of length 2 with 1 run

Lengths: 2

Values : 3

But using Views on such an object exposes some missing functionality

> grView <- GRanges("chr1", ranges = IRanges(start = 2, end = 7))

> vi <- Views(rl, grView)

Error in RleViewsList(rleList = subject, rangesList = start): 'rangesList' must \

be a RangesList object

We get an error, mentioning some object called a RangesList. This type of object is similar to a
GRanges and could be considered succeeded by the later class. We sometimes see instances of this
popping around.

> vi <- Views(rl, as(grView, "RangesList"))

> vi

RleViewsList of length 1

names(1): chr1

> vi[[1]]

Views on a 12-length Rle subject

views:

start end width

[1] 2 7 6 [2 3 3 3 3 3]

15.9 Biology Usecase

Suppose we want to compute the average coverage of bases belonging to (known) exons.

Input objects are
reads: a GRanges.
exons: a GRanges.

pseudocode:
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> bases <- reduce(exons)

> nBases <- sum(width(bases))

> nCoverage <- sum(Views(coverage(reads), bases))

> nCoverage / nBases

(watch out for strand)



16. GenomicRanges - Lists
Watch a video¹ of this chapter.

16.1 Dependencies

This document has the following dependencies:

> library(GenomicRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomicRanges"))

16.2 Overview

In this session we will discuss GRangesList which is a list of GRanges (whoa; blinded by the insight
here!).

16.3 Why

The IRanges and GenomicRanges packages introduced a number of classes Iâ€™ll call XXList; an
example is GRangesList.

These looks like standard lists from base R, but they require that every element of the list is of the
same class. This is convenient from a data structure perspective; we know exactly what is in the list.

But things are also happening behind the scenes. These types of lists often have additional
compression build into them. Because of this, it is best to use specific methods/functions on them, as
opposed to the standard toolbox of sapply/lapply that we use for normal lists. This will be clearer
below.

An important usecase specifically for GRangesList is the representation of a set of transcripts. Each
transcript is an element in the list and the exons of the transcript is represented as a GRanges.

16.4 GrangesList

Let us make a GRangesList:

¹https://youtu.be/Ba3_nX2L1gI
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> gr1 <- GRanges(seqnames = "chr1", ranges = IRanges(start = 1:4, width = 3))

> gr2 <- GRanges(seqnames = "chr2", ranges = IRanges(start = 1:4, width = 3))

> gL <- GRangesList(gr1 = gr1, gr2 = gr2)

> gL

GRangesList object of length 2:

$gr1

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 3] *

[2] chr1 [2, 4] *

[3] chr1 [3, 5] *

[4] chr1 [4, 6] *

$gr2

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr2 [1, 3] *

[2] chr2 [2, 4] *

[3] chr2 [3, 5] *

[4] chr2 [4, 6] *

seqinfo: 2 sequences from an unspecified genome; no seqlengths

A number of standard GRanges functions work, but returns (for example) IntegerLists

> start(gL)

IntegerList of length 2

[["gr1"]] 1 2 3 4

[["gr2"]] 1 2 3 4

> seqnames(gL)

RleList of length 2

$gr1

factor-Rle of length 4 with 1 run

Lengths: 4

Values : chr1

Levels(2): chr1 chr2

$gr2

factor-Rle of length 4 with 1 run

Lengths: 4

Values : chr2

Levels(2): chr1 chr2
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I very often want to get the length of each of the elements. Surprisingly it is very slow to get this
using sapply(gL, length) (or at least it used to be very slow). There is a dedicated function for
this:

> elementLengths(gL)

gr1 gr2

4 4

We have a new XXapply function with the fancy name endoapply. This is used when you want to
apply a function which maps a GRanges into a GRanges, say a shift or resize.

> shift(gL, 10)

GRangesList object of length 2:

$gr1

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [11, 13] *

[2] chr1 [12, 14] *

[3] chr1 [13, 15] *

[4] chr1 [14, 16] *

$gr2

GRanges object with 4 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr2 [11, 13] *

[2] chr2 [12, 14] *

[3] chr2 [13, 15] *

[4] chr2 [14, 16] *

seqinfo: 2 sequences from an unspecified genome; no seqlengths

findOverlaps works slightly different. For GRangesLists, we think of each element is a union of
ranges. So we get an overlap if any range overlaps. Lets us see
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> findOverlaps(gL, gr2)

Hits object with 4 hits and 0 metadata columns:

queryHits subjectHits

<integer> <integer>

[1] 2 1

[2] 2 2

[3] 2 3

[4] 2 4

-------

queryLength: 2 / subjectLength: 4

Note how the queryLength is 2 and not 20. What we know from the first row of this output is that
some range in gL[[2]] overlaps the range gr[1].

This is actually a feature if we think of the GRangesList as a set of transcript, where each GRanges

gives you the exon of the transcript. With this interpretation, findOverlaps tells you whether or not
the transcript overlaps some region of interest, and this is true if any of the exons of the transcript
overlaps the region.

16.5 Other Lists

There are many other types of XXList, including

• RleList

• IRangesList

• IntegerList

• CharacterList

• LogicalList

and many others.



17. GenomicFeatures
Watch a video¹ of this chapter.

17.1 Dependencies

This document has the following dependencies:

> library(GenomicFeatures)

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GenomicFeatures", "TxDb.Hsapiens.UCSC.hg19.knownGene"))

17.2 Overview

The GenomicFeatures package contains functionality for so-called transcript database or TxDb
objects. These objects contains a coherent interface to transcripts. Transcripts are complicated
because higher organisms usually have many different transcripts for each gene locus.

17.3 Examples

Wewill show the TxDb functionality by examining a database of human transcripts. Unlike genomes
in Bioconductor, there is no shorthand object; we reassign the long name to a shorter for convenience:

¹https://youtu.be/9sAhB4Bs43k
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> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> txdb

TxDb object:

# Db type: TxDb

# Supporting package: GenomicFeatures

# Data source: UCSC

# Genome: hg19

# Organism: Homo sapiens

# Taxonomy ID: 9606

# UCSC Table: knownGene

# Resource URL: http://genome.ucsc.edu/

# Type of Gene ID: Entrez Gene ID

# Full dataset: yes

# miRBase build ID: GRCh37

# transcript_nrow: 82960

# exon_nrow: 289969

# cds_nrow: 237533

# Db created by: GenomicFeatures package from Bioconductor

# Creation time: 2015-10-07 18:11:28 +0000 (Wed, 07 Oct 2015)

# GenomicFeatures version at creation time: 1.21.30

# RSQLite version at creation time: 1.0.0

# DBSCHEMAVERSION: 1.1

A TxDb object is really an interface to a SQLite database. You can query the database using a number
of tools detailed in the package vignette, but usually you use convenience functions to extract the
relevant information.

Extract basic quantities

• genes()

• transcripts()

• cds()

• exons()

• microRNAs()

• tRNAs()

• promoters()

Extract quantities and group

• transcriptsBy(by = c("gene", "exon", "cds"))

• cdsBy(by = c("tx", "gene"))
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• exonsBy(by = c("tx", "gene"))

• intronsByTranscript()

• fiveUTRsByTranscript()

• threeUTRsByTranscript()

(Note: there are grouping functions without the non-grouping function and vice versa; there is for
example no introns() function.

Other functions

• transcriptLengths() (optionally include CDS length etc).
• XXByOverlaps() (select features based on overlaps with XX being transcript, cds or exon).

Mapping between genome and transcript coordinates

• extractTranscriptSeqs() (getting RNA sequencing of the transcripts).

17.4 Caution: Terminology

The TxDb object approach is powerful but it suffers (in my opinion) from a lack of clearly defined
terminology. Even worse, the meaning of terminology changes depending on the function. For
example transcript is sometimes used to refer to un-spliced transcripts (pre-mRNA) and sometimes
to splices transcripts.

17.5 Gene, exons and transcripts

Let us start by examining genes, exons and transcripts. Let us focus on a single gene on chr1:
DDX11L1.

> gr <- GRanges(seqnames = "chr1", strand = "+", ranges = IRanges(start = 11874,\

end = 14409))

> subsetByOverlaps(genes(txdb), gr)

GRanges object with 1 range and 1 metadata column:

seqnames ranges strand | gene_id

<Rle> <IRanges> <Rle> | <character>

100287102 chr1 [11874, 14409] + | 100287102

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

> subsetByOverlaps(genes(txdb), gr, ignore.strand = TRUE)

GRanges object with 2 ranges and 1 metadata column:
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seqnames ranges strand | gene_id

<Rle> <IRanges> <Rle> | <character>

100287102 chr1 [11874, 14409] + | 100287102

653635 chr1 [14362, 29961] - | 653635

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

The genes() output contains a single gene with these coordinates, overlapping another gene on the
opposite strand. Note that the gene is represented as a single range; so this output tells us nothing
about exons and splicing. There is a single identifier called gene_id. If you look at the output of txdb
youâ€™ll see that this is an “Entrex Gene ID”.

> subsetByOverlaps(transcripts(txdb), gr)

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr1 [11874, 14409] + | 1 uc001aaa.3

[2] chr1 [11874, 14409] + | 2 uc010nxq.1

[3] chr1 [11874, 14409] + | 3 uc010nxr.1

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

The gene has 3 transcripts; again we only have coordinates of the pre-mRNA here. There are 3
different transcript names (tx_name) which are identifiers from UCSC and then we have a TxDb

specific transcript id (tx_id) which is an integer. Letâ€™s look at exons:

> subsetByOverlaps(exons(txdb), gr)

GRanges object with 6 ranges and 1 metadata column:

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr1 [11874, 12227] + | 1

[2] chr1 [12595, 12721] + | 2

[3] chr1 [12613, 12721] + | 3

[4] chr1 [12646, 12697] + | 4

[5] chr1 [13221, 14409] + | 5

[6] chr1 [13403, 14409] + | 6

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

Here we get 6 exons, but no indication of which exons makes up which transcripts. To get this, we
can do
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> subsetByOverlaps(exonsBy(txdb, by = "tx"), gr)

GRangesList object of length 3:

$1

GRanges object with 3 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr1 [11874, 12227] + | 1 <NA> 1

[2] chr1 [12613, 12721] + | 3 <NA> 2

[3] chr1 [13221, 14409] + | 5 <NA> 3

$2

GRanges object with 3 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

[1] chr1 [11874, 12227] + | 1 <NA> 1

[2] chr1 [12595, 12721] + | 2 <NA> 2

[3] chr1 [13403, 14409] + | 6 <NA> 3

$3

GRanges object with 3 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

[1] chr1 [11874, 12227] + | 1 <NA> 1

[2] chr1 [12646, 12697] + | 4 <NA> 2

[3] chr1 [13221, 14409] + | 5 <NA> 3

seqinfo: 93 sequences (1 circular) from hg19 genome

Here we now finally see the structure of the three transcripts in the form of a GRangesList.

Let us include the coding sequence (CDS). Now, it can be extremely hard to computationally infer
the coding sequence from a fully spliced mRNA.

> subsetByOverlaps(cds(txdb), gr)

GRanges object with 3 ranges and 1 metadata column:

seqnames ranges strand | cds_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr1 [12190, 12227] + | 1

[2] chr1 [12595, 12721] + | 2

[3] chr1 [13403, 13639] + | 3

-------

seqinfo: 93 sequences (1 circular) from hg19 genome

> subsetByOverlaps(cdsBy(txdb, by = "tx"), gr)

GRangesList object of length 1:

$2
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GRanges object with 3 ranges and 3 metadata columns:

seqnames ranges strand | cds_id cds_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr1 [12190, 12227] + | 1 <NA> 1

[2] chr1 [12595, 12721] + | 2 <NA> 2

[3] chr1 [13403, 13639] + | 3 <NA> 3

seqinfo: 93 sequences (1 circular) from hg19 genome

The output of cds() is not very useful by itself, since each range is part of a CDS, not the entire cds.
We need to know how these ranges together form a CDS, and for that we need cdsBy(by = "tx").
We can see that only one of the three transcripts has a CDS by looking at their CDS lengths:

> subset(transcriptLengths(txdb, with.cds_len = TRUE), gene_id == "100287102")

tx_id tx_name gene_id nexon tx_len cds_len

1 1 uc001aaa.3 100287102 3 1652 0

2 2 uc010nxq.1 100287102 3 1488 402

3 3 uc010nxr.1 100287102 3 1595 0

(here we subset a data.frame).

Note: as an example of terminology mixup, consider that the output of transcripts() are
coordinates for the unspliced transcript, whereas extractTranscriptSeqs() is the RNA sequence
of the spliced transcripts.

17.6 Other Resources

• The vignette from the GenomicFeatures package².

²http://bioconductor.org/packages/GenomicFeatures

http://bioconductor.org/packages/GenomicFeatures
http://bioconductor.org/packages/GenomicFeatures


18. Using the rtracklayer package for
data import

Watch a video¹ of this chapter.

18.1 Dependencies

This document has the following dependencies:

> library(rtracklayer)

> library(AnnotationHub)

> library(Rsamtools)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("rtracklayer", "AnnotationHub", "Rsamtools"))

18.2 Overview

The rtracklayer package interfaces to (UCSC) Genome Browser. It contains functions for importing
and exporting data to this browser.

This includes functionality for parsing file formats associated the UCSC Genome Browser such as
BED, Wig, BigBed and BigWig.

18.3 The import function

The function to parse data formats is import(). This function has a format argument taking values
such as BED or BigWig.

Note that there is a help page for the general import() function, but there are also file format specific
help pages. The easiest way to get to these help pages is to look for XXFilewith XX being the format.

¹https://youtu.be/BGlXm0kCwf4
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> ?import

> ?BigWigFile

There are often format specific arguments.

18.4 BED files

Most BED files are small and can be read as a single object. The output of import(format = "BED")

is a GRanges.

You can specify genome (for example hg19) and the function will try to make an effort to populated
the seqinfo of the GRanges.

You can also use the which argument to selectively parse a subset of the file which overlaps a GRanges.
This becomes much more efficient if the file has been tabix-indexed (see below).

18.5 BigWig files

BigWig files typically store whole-genome coverage vectors (or at least whole-genome data). For
this reason, the R representation of a BigWig file is usually quite big, so it might be necessary to
read it into R in small chunks.

As for BED files, import(format="BigWig") supports a which argumentwhich is a GRanges. It output
data type is a GRanges per default, but using the as agurment you can have as="Rle" and a few other
options.

The import(format="BigWig") does not support a genome argument.

18.6 Other file formats

• GFF
• TwoBit
• Wig
• bedGRaph

18.7 Extensive example

Let us start an AnnotationHub:



Using the rtracklayer package for data import 92

> library(AnnotationHub)

> ahub <- AnnotationHub()

> table(ahub$rdataclass)

AAStringSet BigWigFile biopax ChainFile

1 10247 9 1113

data.frame ExpressionSet FaFile GRanges

24 1 5122 23577

Inparanoid8Db MSnSet mzRident mzRpwiz

268 1 1 1

OrgDb SQLiteConnection TwoBitFile VcfFile

2164 1 1179 8

At this point, you should have seen several of these file formats mentioned. The GRanges are usually
directly constructed from BED file, and the seqinfo information is fully populated:

> ahub.gr <- subset(ahub, rdataclass == "GRanges" & species == "Homo sapiens")

> gr <- ahub.gr[[1]]

> gr

GRanges object with 12011 ranges and 6 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <integer>

[1] chr17 [ 77967164, 77967908] * | . 0

[2] chr14 [ 31698761, 31699349] * | . 0

[3] chr2 [ 46635926, 46636811] * | . 0

[4] chr2 [102577636, 102578715] * | . 0

[5] chr21 [ 46387790, 46388451] * | . 0

... ... ... ... . ... ...

[12007] chr1 [87692002, 87692333] * | . 0

[12008] chr1 [61388054, 61388436] * | . 0

[12009] chr22 [37554384, 37554752] * | . 0

[12010] chr22 [36220362, 36220685] * | . 0

[12011] chr18 [36821553, 36821903] * | . 0

signalValue pValue qValue peak

<numeric> <numeric> <numeric> <integer>

[1] 17.672 243.175 6.941353e-239 401

[2] 16.782 240.744 9.362981e-237 346

[3] 18.917 226.703 6.859981e-223 241

[4] 20.104 222.061 2.256234e-218 827

[5] 66.188 213.519 6.287444e-210 371

... ... ... ... ...

[12007] 9.326 8.537 2.508599e-08 164
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[12008] 9.326 8.537 2.508808e-08 190

[12009] 8.041 8.537 2.509017e-08 177

[12010] 8.041 8.537 2.509225e-08 183

[12011] 8.607 8.537 2.509434e-08 166

-------

seqinfo: 23 sequences from hg19 genome

> seqinfo(gr)

Seqinfo object with 23 sequences from hg19 genome:

seqnames seqlengths isCircular genome

chr1 249250621 FALSE hg19

chr2 243199373 FALSE hg19

chr3 198022430 FALSE hg19

chr4 191154276 FALSE hg19

chr5 180915260 FALSE hg19

... ... ... ...

chr19 59128983 FALSE hg19

chr20 63025520 FALSE hg19

chr21 48129895 FALSE hg19

chr22 51304566 FALSE hg19

chrX 155270560 FALSE hg19

Perhaps more interesting is the data in form of BigWig files.

> ahub.bw <- subset(ahub, rdataclass == "BigWigFile" & species == "Homo sapiens")

> ahub.bw

AnnotationHub with 9932 records

# snapshotDate(): 2016-05-12

# $dataprovider: BroadInstitute

# $species: Homo sapiens

# $rdataclass: BigWigFile

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH32002"]]'

title

AH32002 | E001-H3K4me1.fc.signal.bigwig

AH32003 | E001-H3K4me3.fc.signal.bigwig

AH32004 | E001-H3K9ac.fc.signal.bigwig

AH32005 | E001-H3K9me3.fc.signal.bigwig

AH32006 | E001-H3K27me3.fc.signal.bigwig

... ...

AH49540 | E058_mCRF_FractionalMethylation.bigwig
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AH49541 | E059_mCRF_FractionalMethylation.bigwig

AH49542 | E061_mCRF_FractionalMethylation.bigwig

AH49543 | E081_mCRF_FractionalMethylation.bigwig

AH49544 | E082_mCRF_FractionalMethylation.bigwig

> bw <- ahub.bw[[1]]

> bw

BigWigFile object

resource: /Users/khansen/.AnnotationHub/37442

This returns us a file name, ready for use by import.

> gr1 <- gr[1:3]

> out.gr <- import(bw, which = gr1)

> out.gr

GRanges object with 350 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

[1] chr14 [31698761, 31698771] * | 0.911909997463226

[2] chr14 [31698772, 31698777] * | 0.8612300157547

[3] chr14 [31698778, 31698817] * | 1.1482800245285

[4] chr14 [31698818, 31698826] * | 1.08782994747162

[5] chr14 [31698827, 31698839] * | 0.8158900141716

... ... ... ... . ...

[346] chr2 [46636756, 46636762] * | 1.96861004829407

[347] chr2 [46636763, 46636767] * | 2.21465992927551

[348] chr2 [46636768, 46636788] * | 2.32524991035461

[349] chr2 [46636789, 46636800] * | 2.06692004203796

[350] chr2 [46636801, 46636811] * | 1.80850994586945

-------

seqinfo: 25 sequences from an unspecified genome

This gives us the content in the form of a GRanges. Often, an Rle might be appropriate:
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> out.rle <- import(bw, which = gr1, as = "Rle")

> out.rle

RleList of length 25

$chr1

numeric-Rle of length 249250621 with 1 run

Lengths: 249250621

Values : 0

$chr10

numeric-Rle of length 135534747 with 1 run

Lengths: 135534747

Values : 0

$chr11

numeric-Rle of length 135006516 with 1 run

Lengths: 135006516

Values : 0

$chr12

numeric-Rle of length 133851895 with 1 run

Lengths: 133851895

Values : 0

$chr13

numeric-Rle of length 115169878 with 1 run

Lengths: 115169878

Values : 0

<20 more elements>

You can get all of chr22 by

> gr.chr22 <- GRanges(seqnames = "chr22",

+ ranges = IRanges(start = 1, end = seqlengths(gr)["chr22"]))

> out.chr22 <- import(bw, which = gr.chr22, as = "Rle")

> out.chr22[["chr22"]]

numeric-Rle of length 51304566 with 1381642 runs

Lengths: 16050196 194 ... 61301

Values : 0 0.465829998254776 ... 0
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18.8 LiftOver

LiftOver is a popular tool from the UCSCGenome Browser for converting between different genome
versions. The rtracklayer package also exposes this function through the liftOver. To use liftOver
you need a so-called “chain” file describing how to convert from one genome to another. This can
be obtained by hand from UCSC, or directly from AnnotationHub.

We can re-use our AnnotationHub:

> ahub.chain <- subset(ahub, rdataclass == "ChainFile" & species == "Homo sapien\

s")

> query(ahub.chain, c("hg18", "hg19"))

AnnotationHub with 2 records

# snapshotDate(): 2016-05-12

# $dataprovider: UCSC

# $species: Homo sapiens

# $rdataclass: ChainFile

# additional mcols(): taxonomyid, genome, description, tags,

# sourceurl, sourcetype

# retrieve records with, e.g., 'object[["AH14149"]]'

title

AH14149 | hg19ToHg18.over.chain.gz

AH14220 | hg18ToHg19.over.chain.gz

> chain <- ahub.chain[ahub.chain$title == "hg19ToHg18.over.chain.gz"]

> chain <- chain[[1]]

> gr.hg18 <- liftOver(gr, chain)

> gr.hg18

GRangesList object of length 12011:

[[1]]

GRanges object with 1 range and 6 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <integer>

[1] chr17 [75581759, 75582503] * | . 0

signalValue pValue qValue peak

<numeric> <numeric> <numeric> <integer>

[1] 17.672 243.175 6.941353e-239 401

[[2]]

GRanges object with 1 range and 6 metadata columns:

seqnames ranges strand | name score signalValue

[1] chr14 [30768512, 30769100] * | . 0 16.782

pValue qValue peak
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[1] 240.744 9.362981e-237 346

[[3]]

GRanges object with 1 range and 6 metadata columns:

seqnames ranges strand | name score signalValue

[1] chr2 [46489430, 46490315] * | . 0 18.917

pValue qValue peak

[1] 226.703 6.859981e-223 241

<12008 more elements>

seqinfo: 23 sequences from an unspecified genome; no seqlengths

This converts a GRanges into a GRangesList, why? This is because a single range (interval) may
be split into multiple intervals in the other genome. So each element in the output correspond to a
single range in the input. If the ranges are small, most ranges should be mapped to a single range.
Let us look at the number of elements in output:

> table(elementLengths(gr.hg18))

0 1 2 3

7 11996 5 3

Only a few ranges were not mapped and only a few were split.

18.9 Importing directly from UCSC

Using rtracklayer you can import tables and tracks directly from the UCSC Genome Browser.
However, it is now possible to get a lot (all?) of this data from AnnotationHub and this later package
seems friendlier.

It is possible that not all tracks / tables and/or all information from the different track / tables from
UCSC are exposed in AnnotationHub.

See a detailed exposition in the package vignette.

18.10 Tabix indexing

Tabix indexing is a way to index a text file with chromosomal positions for random access. This
will greatly speed up any querying of such a file. The tabix² functionality was introduced in the
SAMtools library; this library was later renamed to htslib.

²http://www.htslib.org/doc/tabix.html

http://www.htslib.org/doc/tabix.html
http://www.htslib.org/doc/tabix.html
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Tabix indexing is usually something you do at the command line, but there is also the convenient
possibility of doing it from inside Bioconductor using indexTabix from the Rsamtools package. First
however, the file needs to be bgzip2 compressed, which you can do using the bgzip2 function. A full
pipeline, using an example SAM file from Rsamtools is

> library(Rsamtools)

> from <- system.file("extdata", "ex1.sam", package="Rsamtools",

+ mustWork=TRUE)

> from

[1] "/Library/Frameworks/R.framework/Versions/3.3/Resources/library/Rsamtools/ex\

tdata/ex1.sam"

> to <- tempfile()

> zipped <- bgzip(from, to)

> idx <- indexTabix(zipped, "sam")

see also the help page for indexTabix.

18.11 Other Resources

• The vignette from the rtracklayer package³.

³http://bioconductor.org/packages/rtracklayer

http://bioconductor.org/packages/rtracklayer
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19. ExpressionSet
Watch a video¹ of this chapter.

19.1 Dependencies

This document has the following dependencies:

> library(Biobase)

> library(ALL)

> library(hgu95av2.db)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("Biobase", "ALL", "hgu95av2.db"))

19.2 Overview

Wewill examine how to use and manipulate the ExpressionSet class; a fundamental data container
in Bioconductor. The class is defined in the Biobase package.

This class has inspired many other data containers in Bioconductor. It is a great example of
programming with data.

19.3 Data Containers

R/Bioconductor has a rich set of data containers, or types of objects for storing different types of
genomic data. Data containers might seem a boring subject at first, but in my opinion, they have
been critical to the success of Bioconductor. Don’t just take my word for it; the following quote is
from Robert Gentleman (co-creator of R and founder of Bioconductor) on successful computational
biology software (Altschul et al. 2013):

If everybody puts their gene expression data into the same kind of box, it doesn’t matter
how the data came about, but that box is the same and can be used by analytic tools

¹https://youtu.be/wVFxRsz2zGQ
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The classic example is gene expression microarray data. In Bioconductor, data from such an
experiment goes through the following pipeline

1. Data is read into Bioconductor from a vendor specific file format and stored as raw data in a
vendor specific data container.

2. The raw data is preprocessed, using statistical and computational methods which are specific
to the vendor specific data.

3. After preprocessing, the data is stored in an ExpressionSet data container.

For example, data from Affymetrix microarrays and Agilent microarrays have (in their raw version)
aspects of the data which are different to each vendor. Affymetrix uses short oligonucleotide probes
and therefore uses multiple probes to measure a single gene. In contrast, Agilent uses long(er) probes
and typically uses a single probe to measure a gene. But after preprocessing, both platforms have a
set of measurements on a set of genes. At this level, the data becomes similar.

Multiple types of raw data are unified in a single data container.

Having well designed data containers allows developer to write methods for these data containers
which will be applicable to many types of use cases. And it helps users by making the data easier to
manipulate; thereby reducing errors.

19.4 The structure of an ExpressionSet

Gene expression data can be thought of as a data matrix of expression values, one for each (gene,
sample) pair. Tradition demands that rows are genes and columns are samples. Genes are sometimes
called features. An example of this is
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Gene by sample matrix of expression values. The pink rectangle denotes the measurement of all genes in one sample,
and the blue rectangle denote the measurement of one gene across all samples.

We always have additional data on the samples, often called covariates or phenotype data. This
is represented in a new data matrix; this time samples are in the rows and covariates are in the
columns. There is an implicit link between columns of the gene expression data matrix and rows of
the phenotype matrix. An example of this is

Gene by sample matrix linked to a sample by covariate matrix.

You can think of the phenotype information as annotation on the columns of the expression matrix.
We also allow annotation on the rows of the expression matrix. This is additional information on
each gene in the matrix, such as name, location and GC content. Historically, this has been used less
in Bioconductor. An full depiction of an ExpressionSet is seen here:
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An ExpressionSet, linking a gene expression matrix to metadata on both columns (samples) and rows (features).

The ExpressionSet construction has been used for many other ttypes of data, besides gene
expression data. A general class, allowing for multiple data matrices, is an eSet depicted below.

An eSet

Examples of the need for multiple data matrices are DNA methylation microarrays where two
measurements are obtained for each feature (a methylated and an unmethylated channel).
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19.5 Example

An example dataset, stored as an ExpressionSet is available in the ALL² package. This package is
an example of an “experimental data” package”; a bundling of a full experiment inside an R package.
These experimental data packages are used for teaching, testing and illustration, but can also serve
as the documentation of a data analysis.

> library(ALL)

> data(ALL)

> ALL

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 128 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... LAL4 (128 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

(you don’t always have to explicitly call data() on all datasets in R; that depends on the choice of
the package author).

This is an experiment done on an Affymetrix HGU 95av2 gene expression microarray; the authors
profiled 128 samples.

Because this is data from an experiment package, there is documentation in the help page for the
dataset, see

> ?ALL

From the printed description of ALL you can see that 12625 features (in this case genes) were
measured on 128 samples. The object contains information about the experiment; look at

²http://bioconductor.org/packages/ALL

http://bioconductor.org/packages/ALL
http://bioconductor.org/packages/ALL
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> experimentData(ALL)

Experiment data

Experimenter name: Chiaretti et al.

Laboratory: Department of Medical Oncology, Dana-Farber Cancer Institute, Depa\

rtment of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston\

, MA 02115, USA.

Contact information:

Title: Gene expression profile of adult T-cell acute lymphocytic leukemia iden\

tifies distinct subsets of patients with different response to therapy and survi\

val.

URL:

PMIDs: 14684422 16243790

Abstract: A 187 word abstract is available. Use 'abstract' method.

Two papers (pubmed IDs or PMIDs) are associated with the data.

There is no protocolData in the object (this is intended to describe the experimental protocol); this
is typical in my experience (although it would be great to have this information easily available to
the end user).

The core of the object are two matrices

• the exprs matrix containing the 12625 gene expression measurements on the 128 samples (a
12625 by 128 numeric matrix).

• the pData data.frame containing phenotype data on the samples.

You get the expression data by

> exprs(ALL)[1:4, 1:4]

01005 01010 03002 04006

1000_at 7.597323 7.479445 7.567593 7.384684

1001_at 5.046194 4.932537 4.799294 4.922627

1002_f_at 3.900466 4.208155 3.886169 4.206798

1003_s_at 5.903856 6.169024 5.860459 6.116890

Note how this matrix has column and rownames. These are sampleNames and featureNames. Get
them by
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> head(sampleNames(ALL))

[1] "01005" "01010" "03002" "04006" "04007" "04008"

> head(featureNames(ALL))

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at" "1005_at"

To get at the pData information, using the pData accessor.

> head(pData(ALL))

cod diagnosis sex age BT remission CR date.cr t(4;11) t(9;22)

01005 1005 5/21/1997 M 53 B2 CR CR 8/6/1997 FALSE TRUE

01010 1010 3/29/2000 M 19 B2 CR CR 6/27/2000 FALSE FALSE

03002 3002 6/24/1998 F 52 B4 CR CR 8/17/1998 NA NA

04006 4006 7/17/1997 M 38 B1 CR CR 9/8/1997 TRUE FALSE

04007 4007 7/22/1997 M 57 B2 CR CR 9/17/1997 FALSE FALSE

04008 4008 7/30/1997 M 17 B1 CR CR 9/27/1997 FALSE FALSE

cyto.normal citog mol.biol fusion protein mdr kinet ccr

01005 FALSE t(9;22) BCR/ABL p210 NEG dyploid FALSE

01010 FALSE simple alt. NEG <NA> POS dyploid FALSE

03002 NA <NA> BCR/ABL p190 NEG dyploid FALSE

04006 FALSE t(4;11) ALL1/AF4 <NA> NEG dyploid FALSE

04007 FALSE del(6q) NEG <NA> NEG dyploid FALSE

04008 FALSE complex alt. NEG <NA> NEG hyperd. FALSE

relapse transplant f.u date last seen

01005 FALSE TRUE BMT / DEATH IN CR <NA>

01010 TRUE FALSE REL 8/28/2000

03002 TRUE FALSE REL 10/15/1999

04006 TRUE FALSE REL 1/23/1998

04007 TRUE FALSE REL 11/4/1997

04008 TRUE FALSE REL 12/15/1997

You can access individual columns of this data.frame by using the $ operator:

> head(pData(ALL)$sex)

[1] M M F M M M

Levels: F M

> head(ALL$sex)

[1] M M F M M M

Levels: F M
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19.6 Subsetting

Subsetting of this object is an important operation. The subsetting has two dimensions; the first
dimension is genes and the second is samples. It keeps track of how the expression measures are
matched to the pheno data.

> ALL[,1:5]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 5 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... 04007 (5 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

> ALL[1:10,]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 10 features, 128 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... LAL4 (128 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

> ALL[1:10,1:5]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 10 features, 5 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... 04007 (5 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none
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experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

We can even change the order of the samples

> ALL[, c(3,2,1)]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 3 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 03002 01010 01005

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

> ALL$sex[c(1,2,3)]

[1] M M F

Levels: F M

> ALL[, c(3,2,1)]$sex

[1] F M M

Levels: F M

This gives us a lot of confidence that the data is properly matched to the phenotypes.

19.7 featureData and annotation

You can think of pData as providing information on the columns (samples) of the measurement
matrix. Similar to pData, we have featureData which is meant to provide information on the
features (genes) of the array.

However, while this slot has existed for many years, it often goes unused:

> featureData(ALL)

An object of class 'AnnotatedDataFrame': none

So this leaves us with a key question: so far the ALL object has some useful description of the type of
experiment and which samples were profiled. But how do we get information on which genes were
profiled?
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For commercially available microarrays, the approach in Bioconductor has been to make so-called
annotation packages which links featureNames to actual useful information. Conceptually, this
information could have been stored in featureData, but isn’t.

Example

> ids <- featureNames(ALL)[1:5]

> ids

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

these are ids named by Affymetrix, the microarray vendor. We can look them up in the annotation
package by

> library(hgu95av2.db)

> as.list(hgu95av2ENTREZID[ids])

$`1000_at`

[1] "5595"

$`1001_at`

[1] "7075"

$`1002_f_at`

[1] "1557"

$`1003_s_at`

[1] "643"

$`1004_at`

[1] "643"

This gives us the Entrez ID associated with the different measurements. There are a number of
so-called “maps” like hgu95av2XX with XX having multiple values. This approach is very specific to
Affymetrix chips. An alternative to using annotation packages is to use the biomaRt package to get
the microarray annotation from Ensembl (an online database). This will be discussed elsewhere.

We will leave the annotation subject for now.

19.8 Note: phenoData and pData

For this type of object, there is a difference between phenoData (an object of class Annotated-

DataFrame) and pData (an object of class data.frame).

The idea behind AnnotatedDataFrame was to include additional information on what a data.frame
contains, by having a list of descriptions called varLabels.
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> pD <- phenoData(ALL)

> varLabels(pD)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t(4;11)" "t(9;22)" "cyto.normal" "citog"

[13] "mol.biol" "fusion protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date last seen"

But these days, it seems that varLabels are constrained to be equal to the column names of the
data.frame making the entire AnnotatedDataFrame construction unnecessary:

> varLabels(pD)[2] <- "Age at diagnosis"

> pD

An object of class 'AnnotatedDataFrame'

sampleNames: 01005 01010 ... LAL4 (128 total)

varLabels: cod Age at diagnosis ... date last seen (21 total)

varMetadata: labelDescription

> colnames(pD)[1:3]

[1] "cod" "Age at diagnosis" "sex"

> varLabels(pD)[1:3]

[1] "cod" "Age at diagnosis" "sex"

So now we have exposed what is arguably a bug, together with some un-used abstraction. This
happens.

19.9 The eSet class

The ExpressionSet class is an example of an eSet. The ExpressionSet class has a single measure-
ment matrix which we access by exprs. In contrast to this, the eSet class can have any number
of measurement matrices with arbitrary names, although all matrices needs to have the same
dimension.

An example of another eSet derived class is NChannelSet which is meant to store multichannel
microarray measurements; an example is a two-color array where the microarray has been imaged
in two different colors.

Another example of classes are from the minfi package for DNA methylation arrays; here there
are classes such as RGChannelSet for a two color microarray and MethylSet for methylation
measurements.
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19.10 Other Resources

• The “An Introduction to Bioconductor’s ExpressionSet Class” vignette from the Biobase
webpage³.

• The “Notes for eSet Developers” vignette from the Biobase webpage⁴ contains advanced
information.

Altschul, Stephen, Barry Demchak, Richard Durbin, Robert Gentleman, Martin Krzywinski, Heng
Li, Anton Nekrutenko, et al. 2013. “The Anatomy of Successful Computational Biology Software.”
Nature Biotechnology 31 (10): 894–97. doi:10.1038/nbt.2721⁵.

³http://bioconductor.org/packages/Biobase
⁴http://bioconductor.org/packages/Biobase
⁵https://doi.org/10.1038/nbt.2721

http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/Biobase
https://doi.org/10.1038/nbt.2721
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/Biobase
https://doi.org/10.1038/nbt.2721


20. SummarizedExperiment
Watch a video¹ of this chapter.

20.1 Dependencies

This document has the following dependencies:

> library(SummarizedExperiment)

> library(GenomicRanges)

> library(airway)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("SummarizedExperiment", "GenomicRanges", "airway"))

20.2 Overview

We will present the SummarizedExperiment class from GenomicRanges package; an extension of the
ExpressionSet class to include GRanges.

This class is suitable for storing processed data particularly from high-throughout sequencing assays.

20.3 Details

An example dataset, stored as a SummarizedExperiment is available in the airway² package. This
data represents an RNA sequencing experiment, but we will use it only for illustrating the class.

¹https://youtu.be/D8IVRmbMjyc
²http://bioconductor.org/packages/airway
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> library(airway)

> data(airway)

> airway

class: RangedSummarizedExperiment

dim: 64102 8

metadata(1): ''

assays(1): counts

rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

rowData names(0):

colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521

colData names(9): SampleName cell ... Sample BioSample

This looks similar to - and yet different from - the ExpressionSet. Things now have different names,
representing that these classes were designed about 10 years apart.

We have 8 samples and 64102 features (genes).

Some aspects of the object are very similar to ExpressionSet, although with slightly different names
and types:

colData contains phenotype (sample) information, like pData for ExpressionSet. It returns a
DataFrame instead of a data.frame:

> colData(airway)

DataFrame with 8 rows and 9 columns

SampleName cell dex albut Run avgLength

<factor> <factor> <factor> <factor> <factor> <integer>

SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126

SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126

SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126

SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87

SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120

SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126

SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101

SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98

Experiment Sample BioSample

<factor> <factor> <factor>

SRR1039508 SRX384345 SRS508568 SAMN02422669

SRR1039509 SRX384346 SRS508567 SAMN02422675

SRR1039512 SRX384349 SRS508571 SAMN02422678

SRR1039513 SRX384350 SRS508572 SAMN02422670

SRR1039516 SRX384353 SRS508575 SAMN02422682

SRR1039517 SRX384354 SRS508576 SAMN02422673

SRR1039520 SRX384357 SRS508579 SAMN02422683

SRR1039521 SRX384358 SRS508580 SAMN02422677
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You can still use $ to get a particular column:

> airway$cell

[1] N61311 N61311 N052611 N052611 N080611 N080611 N061011 N061011

Levels: N052611 N061011 N080611 N61311

metadata is like experimentData from ExpressionSet. This slot is often un-used; this is the case for
this object:

> metadata(airway)

[[1]]

Experiment data

Experimenter name: Himes BE

Laboratory: NA

Contact information:

Title: RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid\

responsive gene that modulates cytokine function in airway smooth muscle cells.\

URL: http://www.ncbi.nlm.nih.gov/pubmed/24926665

PMIDs: 24926665

Abstract: A 226 word abstract is available. Use 'abstract' method.

colnames are like sampleNames from ExpressionSet; rownames are like featureNames.

> colnames(airway)

[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"

[6] "SRR1039517" "SRR1039520" "SRR1039521"

> head(rownames(airway))

[1] "ENSG00000000003" "ENSG00000000005" "ENSG00000000419" "ENSG00000000457"

[5] "ENSG00000000460" "ENSG00000000938"

The measurement data are accessed by assay and assays. A SummarizedExperiment can contain
multiple measurement matrices (all of the same dimension). You get all of them by assays and you
select a particular one by assay(OBJECT, NAME) where you can see the names when you print the
object or by using assayNames. In this case there is a single matrix called counts:
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> airway

class: RangedSummarizedExperiment

dim: 64102 8

metadata(1): ''

assays(1): counts

rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

rowData names(0):

colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521

colData names(9): SampleName cell ... Sample BioSample

> assayNames(airway)

[1] "counts"

> assays(airway)

List of length 1

names(1): counts

> head(assay(airway, "counts"))

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516

ENSG00000000003 679 448 873 408 1138

ENSG00000000005 0 0 0 0 0

ENSG00000000419 467 515 621 365 587

ENSG00000000457 260 211 263 164 245

ENSG00000000460 60 55 40 35 78

ENSG00000000938 0 0 2 0 1

SRR1039517 SRR1039520 SRR1039521

ENSG00000000003 1047 770 572

ENSG00000000005 0 0 0

ENSG00000000419 799 417 508

ENSG00000000457 331 233 229

ENSG00000000460 63 76 60

ENSG00000000938 0 0 0

So far, this is all information which could be stored in an ExpressionSet. The new thing is that
SummarizedExperiment allows for a rowRanges (or granges) data representing the different features.
The idea is that these GRanges tells us which part of the genome is summarized for a particular
feature. Let us take a look
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> length(rowRanges(airway))

[1] 64102

> dim(airway)

[1] 64102 8

> rowRanges(airway)

GRangesList object of length 64102:

$ENSG00000000003

GRanges object with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] X [99883667, 99884983] - | 667145 ENSE00001459322

[2] X [99885756, 99885863] - | 667146 ENSE00000868868

[3] X [99887482, 99887565] - | 667147 ENSE00000401072

[4] X [99887538, 99887565] - | 667148 ENSE00001849132

[5] X [99888402, 99888536] - | 667149 ENSE00003554016

... ... ... ... . ... ...

[13] X [99890555, 99890743] - | 667156 ENSE00003512331

[14] X [99891188, 99891686] - | 667158 ENSE00001886883

[15] X [99891605, 99891803] - | 667159 ENSE00001855382

[16] X [99891790, 99892101] - | 667160 ENSE00001863395

[17] X [99894942, 99894988] - | 667161 ENSE00001828996

<64101 more elements>

seqinfo: 722 sequences (1 circular) from an unspecified genome

See how rowRanges is a GRangesList (it could also be a single GRanges). Each element of the list
represents a feature and the GRanges of the feature tells us the coordinates of the exons in the gene
(or transcript). Because these are genes, for each GRanges, all the ranges should have the same strand
and seqnames, but that is not enforced.

In total we have around 64k “genes” or “transcripts” and around 745k different exons.

> length(rowRanges(airway))

[1] 64102

> sum(elementLengths(rowRanges(airway)))

[1] 745593

For some operations, you donâ€™t need to use rowRanges first, you can use the operation directly
on the object. Here is an example with start():
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> start(rowRanges(airway))

IntegerList of length 64102

[["ENSG00000000003"]] 99883667 99885756 99887482 ... 99891790 99894942

[["ENSG00000000005"]] 99839799 99840228 99848621 ... 99854013 99854505

[["ENSG00000000419"]] 49551404 49551404 49551433 ... 49574900 49574900

[["ENSG00000000457"]] 169818772 169821804 ... 169862929 169863148

[["ENSG00000000460"]] 169631245 169652610 ... 169821931 169821931

[["ENSG00000000938"]] 27938575 27938803 27938811 ... 27961576 27961576

[["ENSG00000000971"]] 196621008 196621186 ... 196716241 196716241

[["ENSG00000001036"]] 143815948 143817763 ... 143832548 143832548

[["ENSG00000001084"]] 53362139 53362139 53362940 ... 53429548 53481684

[["ENSG00000001167"]] 41040684 41040722 41046768 ... 41065096 41065096

<64092 more elements>

> start(airway)

IntegerList of length 64102

[["ENSG00000000003"]] 99883667 99885756 99887482 ... 99891790 99894942

[["ENSG00000000005"]] 99839799 99840228 99848621 ... 99854013 99854505

[["ENSG00000000419"]] 49551404 49551404 49551433 ... 49574900 49574900

[["ENSG00000000457"]] 169818772 169821804 ... 169862929 169863148

[["ENSG00000000460"]] 169631245 169652610 ... 169821931 169821931

[["ENSG00000000938"]] 27938575 27938803 27938811 ... 27961576 27961576

[["ENSG00000000971"]] 196621008 196621186 ... 196716241 196716241

[["ENSG00000001036"]] 143815948 143817763 ... 143832548 143832548

[["ENSG00000001084"]] 53362139 53362139 53362940 ... 53429548 53481684

[["ENSG00000001167"]] 41040684 41040722 41046768 ... 41065096 41065096

<64092 more elements>

You can use granges() as synonymous for rowRanges().

Subsetting works like ExpressionSet: there are two dimensions, the first dimension is features
(genes) and the second dimension is samples.

Because the SummarizedExperiment contains a GRanges[List] you can also use subsetByOverlaps,
like
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> gr <- GRanges(seqnames = "1", ranges = IRanges(start = 1, end = 10^7))

> subsetByOverlaps(airway, gr)

class: RangedSummarizedExperiment

dim: 329 8

metadata(1): ''

assays(1): counts

rownames(329): ENSG00000007923 ENSG00000008128 ... ENSG00000272512

ENSG00000273443

rowData names(0):

colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521

colData names(9): SampleName cell ... Sample BioSample



21. GEOquery
Watch a video¹ of this chapter.

21.1 Dependencies

This document has the following dependencies:

> library(GEOquery)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("GEOquery"))

21.2 Overview

NCBI Gene Expression Omnibus (GEO) has a lot of high-throughput genomics datasets publicly
available. Despite the name, this database is not exclusively for gene expression data.

21.3 NCBI GEO

NCBI GEO is organised as samples which are grouped into series. For bigger experiments there are
both SubSeries and SuperSeries. A SuperSeries is all the experiments for a single paper; a SuperSeries
can be decomposed into SubSeries which are different technologies. As an example, look at the
SuperSeries GSE19486². In this paper they used 2 different platforms (this is a weird name; a platform
is a combination of a technology and a species). And they did RNA-seq and ChIP-seq for two
different factors (NFkB-II and Pol II). This results in 4 SubSeries (2 for RNA-seq and 2 for ChIP-
seq).

A simpler setup is for example GSE994³ where samples from current and former smokers were
compared, using an Affymetrix microarray.

¹https://youtu.be/hO4ORyp9FDo
²http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19486
³http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE994
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Data submitted to NCBI GEO can be both “raw” and “proceseed”. Let us focus on gene expression
data for the moment. “Processed” data is normalized and quantified, typically at the gene level,
and is usually provided in the form of a gene by sample matrix. “Raw” data can be anything, from
sequencing reads to microarray image files. There can even be different states of “raw” data, for
example for a RNA-seq dataset you may have

• FASTQ files (raw reads)
• BAM files (aligned reads)
• gene by sample expression matrix (unnormalized)
• gene by sample expression matrix (normalized)

So what is “raw” and what is “processed” can be very context dependent.

In some cases there is a consensus in the field. For Affymetrix gene expression microarrays, “raw”
files are so-called CEL files (a file format invented by Affymetrix) and “processed” data is normalized
and quantified data, summarized at the probeset level.

At the end of the day, GEO has series identifiers (like GSE19486) and sample identiers (GSM486297).
Note the GSE vs GSM in the same. A user is almost always interested in all the samples in a given
series, so the starting point is the series identifier, also called the accession number.

21.4 GEOquery

All you need to download data from GEO is the accession number. Let us use GSE11675⁴ which is a
very small scale Affymetrix gene expression array study (6 samples).

> eList <- getGEO("GSE11675")

> class(eList)

[1] "list"

> length(eList)

[1] 1

> names(eList)

[1] "GSE11675_series_matrix.txt.gz"

> eData <- eList[[1]]

> eData

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 6 samples

element names: exprs

protocolData: none

phenoData

⁴http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11675

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11675
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11675
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sampleNames: GSM296630 GSM296635 ... GSM296639 (6 total)

varLabels: title geo_accession ... data_row_count (34 total)

varMetadata: labelDescription

featureData

featureNames: 1000_at 1001_at ... AFFX-YEL024w/RIP1_at (12625

total)

fvarLabels: ID GB_ACC ... Gene Ontology Molecular Function (16

total)

fvarMetadata: Column Description labelDescription

experimentData: use 'experimentData(object)'

Annotation: GPL8300

The function returns a list because you might be getting multiple SubSeries. In this case there is
only one, and the list element is an ExpressionSet ready for usage! The phenotype data (which GEO
knows about) is contained inside the pData slot; there is usually a lot of unnecessary stuff here:

> names(pData(eData))

[1] "title" "geo_accession"

[3] "status" "submission_date"

[5] "last_update_date" "type"

[7] "channel_count" "source_name_ch1"

[9] "organism_ch1" "characteristics_ch1"

[11] "characteristics_ch1.1" "characteristics_ch1.2"

[13] "molecule_ch1" "extract_protocol_ch1"

[15] "label_ch1" "label_protocol_ch1"

[17] "taxid_ch1" "hyb_protocol"

[19] "scan_protocol" "description"

[21] "data_processing" "platform_id"

[23] "contact_name" "contact_email"

[25] "contact_phone" "contact_department"

[27] "contact_institute" "contact_address"

[29] "contact_city" "contact_zip/postal_code"

[31] "contact_country" "supplementary_file"

[33] "supplementary_file.1" "data_row_count"

However, what we got here was processed data. Users (including me) often wants access to more
raw data. This is called “supplementary files” in GEO language and we can get those as well. For
display purposes we only keep the basename() of the files.
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> eList2 <- getGEOSuppFiles("GSE11675")

> rownames(eList2) <- basename(rownames(eList2))

> eList2

size isdir mode mtime

GSE11675_RAW.tar 45803520 FALSE 644 2016-05-23 10:40:26

filelist.txt 740 FALSE 644 2016-05-23 10:40:26

ctime atime uid gid uname

GSE11675_RAW.tar 2016-05-23 10:40:26 2016-05-23 10:39:33 501 20 khansen

filelist.txt 2016-05-23 10:40:26 2016-05-21 13:05:45 501 20 khansen

grname

GSE11675_RAW.tar staff

filelist.txt staff

> tarArchive <- rownames(eList2)[1]

> tarArchive

[1] "GSE11675_RAW.tar"

This is now a data.frame of file names. A single TAR archive was downloaded. You can expand the
TAR achive using standard tools; inside there is a list of 6 CEL files and 6 CHP files. You can then
read the 6 CEL files into R using functions from affy or oligo.

It is also possible to use GEOquery to query GEO as a database (ie. looking for datasets); more
information in the package vignette.

21.5 Other packages

There are other packages for accessing other online repositories with public data; they include SRAdb
for the Short Read Archive (SRA) and ArrayExpress (ArrayExpress; a similar database to NCBI GEO
but hosted at the European Bioinformatics Institute (EBI)).

21.6 Other Resources

• The vignette from the GEOquery package⁵.
• GEO documentation⁶.

⁵http://bioconductor.org/packages/GEOquery
⁶http://www.ncbi.nlm.nih.gov/geo/info/overview.html

http://bioconductor.org/packages/GEOquery
http://www.ncbi.nlm.nih.gov/geo/info/overview.html
http://bioconductor.org/packages/GEOquery
http://www.ncbi.nlm.nih.gov/geo/info/overview.html


22. biomaRt
Watch a video¹ of this chapter.

22.1 Dependencies

This document has the following dependencies:

> library(biomaRt)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("biomaRt"))

22.2 Overview

We use a large number of different databases in computational biology. “Biomart” is a flexible
interface to a biological database. The idea is that any kind of resource can setup a Biomart and
then users can access the data using a single set of tools to access multiple databases.

The biomaRt package implements such an interface.

Databases supporting the Biomart interface includes Ensembl (from EBI), HapMap and UniProt.

22.3 Specifiying a mart and a dataset

To use biomaRt you need a mart (database) and a dataset inside the database. This is somewhat
similar to AnnotationHub.

¹https://youtu.be/-EXanoy2CGk
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> head(listMarts())

biomart version

1 ENSEMBL_MART_ENSEMBL Ensembl Genes 84

2 ENSEMBL_MART_SNP Ensembl Variation 84

3 ENSEMBL_MART_FUNCGEN Ensembl Regulation 84

4 ENSEMBL_MART_VEGA Vega 64

> mart <- useMart("ensembl")

> mart

Object of class 'Mart':

Using the ENSEMBL_MART_ENSEMBL BioMart database

Using the dataset

> head(listDatasets(mart))

dataset

1 oanatinus_gene_ensembl

2 cporcellus_gene_ensembl

3 gaculeatus_gene_ensembl

4 itridecemlineatus_gene_ensembl

5 lafricana_gene_ensembl

6 choffmanni_gene_ensembl

description version

1 Ornithorhynchus anatinus genes (OANA5) OANA5

2 Cavia porcellus genes (cavPor3) cavPor3

3 Gasterosteus aculeatus genes (BROADS1) BROADS1

4 Ictidomys tridecemlineatus genes (spetri2) spetri2

5 Loxodonta africana genes (loxAfr3) loxAfr3

6 Choloepus hoffmanni genes (choHof1) choHof1

> ensembl <- useDataset("hsapiens_gene_ensembl", mart)

> ensembl

Object of class 'Mart':

Using the ENSEMBL_MART_ENSEMBL BioMart database

Using the hsapiens_gene_ensembl dataset

You can see that the different datasets are organized by species; we have select Homo sapiens.

You access this database over the internet. Sometimes you need to specify a proxy server for this to
work; details are in the biomaRt vignette; I have never encountered this.

22.4 Building a query

There is one main function in biomaRt : getBM() (get Biomart). This function retrives data from a
Biomart based on a query. So it is important to understand how to build queries.
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A Biomart query consists of 3 things: “attributes”, “filters” and “values”. Let us do an example. Let us
say we want to annotate an Affymetrix gene expression microarray. We have Affymetrix probe ids
in R and we want to retrieve gene names. In this case gene names is an “attribute” and Affymetrix
probe ids is a “Filter”. Finally, the “values” are the actual values of the “filter”, ie. the ids.

An example might be (not run)

> values <- c("202763_at","209310_s_at","207500_at")

> getBM(attributes = c("ensembl_gene_id", "affy_hg_u133_plus_2"),

+ filters = "affy_hg_u133_plus_2", values = values, mart = ensembl)

ensembl_gene_id affy_hg_u133_plus_2

1 ENSG00000137757 207500_at

2 ENSG00000164305 202763_at

3 ENSG00000196954 209310_s_at

Note that I list affy_hg_133_plus_2 under both attributes and filters. It is listed under
attributes because otherwise it would not appear in the return value of the function. If I don’t
have the aafy_hg_133_plus_2 column in my data.frame I wouldn’t know where genes are mapped
to which probe ids. I would just have a list of which genes were measured on the array.

An example of a filter that might not appear in the attributes is if youwant to only select autosomal
genes. You may not care about which chromosomes the different genes appear on, just that they are
on autosomal chromosomes.

Important note: Biomart (at least Ensembl) logs how often you query. If you query to many times,
it disable access for a while. So the trick is to make a single vectorized query using a long list of
values and not call getBM() for each individual value (doing this is also much, much slower).

A major part of using biomaRt is figuring out which attributes and which filters to use. You
can get a description of this using listAttributes() and listFilters(); taht returns a very long
data.frame.

> attributes <- listAttributes(ensembl)

> head(attributes)

name description page

1 ensembl_gene_id Ensembl Gene ID feature_page

2 ensembl_transcript_id Ensembl Transcript ID feature_page

3 ensembl_peptide_id Ensembl Protein ID feature_page

4 ensembl_exon_id Ensembl Exon ID feature_page

5 description Description feature_page

6 chromosome_name Chromosome Name feature_page

> nrow(attributes)

[1] 1319

> filters <- listFilters(ensembl)
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> head(filters)

name description

1 chromosome_name Chromosome name

2 start Gene Start (bp)

3 end Gene End (bp)

4 band_start Band Start

5 band_end Band End

6 marker_start Marker Start

> nrow(filters)

[1] 297

A lot of the attributes are gene names for the corresponding gene in a different organism. All these
entries makes it a bit hard to get a good idea of what is there.

In Biomart, data is organized into pages (if you know about databases, this is a non-standard design).
Each page contains a subset of attributes. You can get amore understandable set of attributes by using
pages.

> attributePages(ensembl)

[1] "feature_page" "structure" "homologs" "snp"

[5] "snp_somatic" "sequences"

> attributes <- listAttributes(ensembl, page = "feature_page")

> head(attributes)

name description page

1 ensembl_gene_id Ensembl Gene ID feature_page

2 ensembl_transcript_id Ensembl Transcript ID feature_page

3 ensembl_peptide_id Ensembl Protein ID feature_page

4 ensembl_exon_id Ensembl Exon ID feature_page

5 description Description feature_page

6 chromosome_name Chromosome Name feature_page

> nrow(attributes)

[1] 178

All the homologs I complain about above are part of the … homologs page.

An attribute can be part of multiple pages. It turns out that getBM() can only return a query which
uses attributes from a single page. If you want to combine attributes from multiple pages you
need to do multiple queries and then merge them.

Another aspect of working with getBM() is that sometimes the return data.frame contains
duplicated rows. This is a consequence of the internal structure of the database and how queries
are interpreted.

The biomaRt vignette is very useful and readable and contains a lot of example tasks, which can
inspire future use. As a help, I have listed some of them here:
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1. Annotate a set of Affymetrix identifiers with HUGO symbol and chromosomal locations of
corresponding genes.

2. Annotate a set of EntrezGene identifiers with GO annotation.
3. Retrieve all HUGO gene symbols of genes that are located on chromosomes 17, 20 or Y, and

are associated with one the following GO terms: “GO:0051330”, “GO:0000080”, “GO:0000114”,
“GO:0000082”.

4. Annotate set of idenfiers with INTERPRO pro- tein domain identifiers.
5. Select all Affymetrix identifiers on the hgu133plus2 chip and Ensembl gene identifiers for

genes located on chromosome 16 between basepair 1100000 and 1250000.
6. Retrieve all entrezgene identifiers and HUGO gene symbols of genes which have a “MAP

kinase activity” GO term associated with it.
7. Given a set of EntrezGene identifiers, retrieve 100bp upstream promoter sequences.
8. Retrieve all 5’ UTR sequences of all genes that are located on chromosome 3 between the

positions 185514033 and 185535839
9. Retrieve protein sequences for a given list of EntrezGene identifiers.
10. Retrieve known SNPs located on the human chromosome 8 between positions 148350 and

148612.
11. Given the human gene TP53, retrieve the human chromosomal location of this gene and also

retrieve the chromosomal location and RefSeq id of it’s homolog in mouse.

22.5 Other Resources

• The vignette from the biomaRt package².

²http://bioconductor.org/packages/biomaRt

http://bioconductor.org/packages/biomaRt
http://bioconductor.org/packages/biomaRt


23. R - S4 Classes and Methods
Watch video 1¹ and video 2² of this chapter.

23.1 Dependencies

This document has the following dependencies:

> library(ALL)

> library(GenomicRanges)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("ALL", "GenomicRanges"))

23.2 Overview

The S4 system in R is a system for object oriented programing. Confusingly, R has support for at
least 3 different systems for object oriented programming: S3, S4 and S5 (also known as reference
classes).

The S4 system is heavily used in Bioconductor, whereas it is very lightly used in “traditional” R
and in packages from CRAN. As a user it can be useful to recognize S4 objects and to learn some
facts about how to explore, manipulate and use the help system when encountering S4 classes and
methods.

Important note for programmers

If you have experience with object oriented programming in other languages, for example java, you
need to understand that in R, S4 objects and methods are completely separate. You can use S4 classes
without every using S4 methods and vice versa.

¹https://youtu.be/CeP-A__FroY
²https://youtu.be/wm-VCagXwj4
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23.3 S3 and S4 classes

Based on years of experience in Bioconductor, it is fair to say that S4 classes have been very successful
in this project. S4 classes has allowed us to construct rich and complicated data representations
that nevertheless seems simple to the end user. An example, which we will return to, are the data
containers ExpressionSet and SummarizedExperiment.

Let us look at a S3 object, the output of the linear model function lm in base R:

> df <- data.frame(y = rnorm(10), x = rnorm(10))

> lm.object <- lm(y ~ x, data = df)

> lm.object

Call:

lm(formula = y ~ x, data = df)

Coefficients:

(Intercept) x

-0.5459 0.4826

> names(lm.object)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

> class(lm.object)

[1] "lm"

In standard R, an S3 object is essentially a list with a class attribute on it. The problem with S3 is
that we can assign any class to any list, which is nonsense. Let us try an example

> xx <- list(a = letters[1:3], b = rnorm(3))

> xx

$a

[1] "a" "b" "c"

$b

[1] 0.2504613 1.0273194 -1.2370133

> class(xx) <- "lm"

> xx

Call:

NULL

No coefficients
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At least we don’t get an error when we print it.

S4 classes have a formal definition and formal validity checking. To the end user, this gurantees
validity of the object.

Let us load an S4 object:

> library(ALL)

> data(ALL)

> ALL

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 128 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 01005 01010 ... LAL4 (128 total)

varLabels: cod diagnosis ... date last seen (21 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

pubMedIds: 14684422 16243790

Annotation: hgu95av2

> class(ALL)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

> isS4(ALL)

[1] TRUE

The last function call checks whether the object is S4.

23.4 Constructors and getting help

The proper way of finding help on a class is to do one of the following

> ?"ExpressionSet-class"

> class?ExpressionSet

Note how you need to put the ExpressionSet-class in quotes.

A constructor function is a way to construct objects of the given class. You have already used
constructor functions for base R classes, such as
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> xx <- list(a = 1:3)

here list() is a constructor function. The Bioconductor coding standards suggests that an S4 class
should have a name that begins with a capital letter and a constructor function with the same name
as the class.

This is true for ExpressionSet:

> ExpressionSet()

ExpressionSet (storageMode: lockedEnvironment)

assayData: 0 features, 0 samples

element names: exprs

protocolData: none

phenoData: none

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

It is common that the constructor function is documented on the same help page as the class; this is
why getting using

> ?ExpressionSet

works to give you detail on the class. This does not always work.

You can always use the function new() to construct an instance of a class. This is now frowned upon
in Bioconductor, since it is not a good idea for complicated classes (… years of experience left out
here). But in old documents on Bioconductor you can sometimes see calls like

> new("ExpressionSet")

ExpressionSet (storageMode: lockedEnvironment)

assayData: 0 features, 0 samples

element names: exprs

protocolData: none

phenoData: none

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

An example of a class in Bioconductor that does not have a constructor function is the BSParams

class from BSgenome used for constructing calls to the bsapply function (applying functions over
whole genomes).
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23.5 Slots and accessor functions

You can get the class definition as

> getClass("ExpressionSet")

Class "ExpressionSet" [package "Biobase"]

Slots:

Name: experimentData assayData phenoData

Class: MIAME AssayData AnnotatedDataFrame

Name: featureData annotation protocolData

Class: AnnotatedDataFrame character AnnotatedDataFrame

Name: .__classVersion__

Class: Versions

Extends:

Class "eSet", directly

Class "VersionedBiobase", by class "eSet", distance 2

Class "Versioned", by class "eSet", distance 3

In this output you’ll see two things

1. A number of slots are mentioned together with a name and a class.
2. The class “extends” the class eSet “directly”.

First, let us discuss (1). Data inside an S4 class are organized into slots. You access slots by using
either ‘@’ or the ’slots()‘ function, like

> ALL@annotation

[1] "hgu95av2"

> slot(ALL, "annotation")

[1] "hgu95av2"

However, as a user you should never have to access slots directly. This is important to understand.
You should get data out of the class using “accessor” functions. Frequently accessor functions are
named as the slot or perhaps get and the slot name.
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> annotation(ALL)

[1] "hgu95av2"

(the get version of this name is getAnnotation() - different package authors use different styles).
Not all slots have an accessor function, because slots may contain data which is not useful to the
user.

Traditionally, accessor functions are documented on the same help page as the class itself.

Accessor functions does not always precisely refer to a slot. For example, for ExpressionSet we use
exprs() to get the expression matrix, but there is no slot called exprs in the class definition. We still
refer to exprs() as an accessor function.

By only using accessor functions you are protecting yourself (and your code) against future changes
in the class definition; accessor functions should always work.

23.6 Class inheritance

Class inheritance is used a lot in Bioconductor. Class inheritance is used when you define a new class
which “is almost like this other class but with a little twist”. For example ExpressionSet inherits from
eSet, and when you look at the class definition you cannot easily see a difference. The difference is
that ExpressionSet is meant to contain expression data and has the exprs() accessor.

To make the usefulness of this more obvious, let me describe (briefly) the MethylSet class from
the minfi (which I have authored). This class is very similar to ExpressionSet except it contains
methylation data. Methylation is commonly measured using two channels “methylation” and
“unmethylation” as opposed to the single channel exposed by ExpressionSet. Both ExpressionSet

and MethylSet inherits from eSet (which actually represents most of the code of these classes)
but ExpressionSet has a single exprs() accessor and MethylSet has two methylation accessors
getMeth() and getUnmeth().

This is useful to know because the documentation for a class might often refer to its parent class.
For example, in the documentation for ExpressionSet you find the phrase “see eSet” a lot.

23.7 Outdated S4 classes

It occasionally happens that an S4 class definition gets updated. This might affect you in the
following scenario

• You do an analysis in a given version of Bioconductor and you save your objects.
• 6 months later your work has to be revised, but Bioconductor has been updated in the
meantime.

• When you load the old object, it doesn’t seem to work.
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The solution to this problem is the function updateObject. When a programmer updates their class
definition, they are supposed to provide an updateObject function which will update old objects to
new objects. Note the “supposed”, this is not guranteed to happen, but feel free to report this as a
bug if you encounter it.

Usage is easy

> new_object <- updateObject(old_object)

In practice, you tend to not want to keep the old_object around so you do

> object <- updateObject(object)

As an added hint, you can always run validity checking on an S4 objects if you think something
funny is going on. It should return TRUE:

> validObject(ALL)

[1] TRUE

Notes on class version

In the early days of Bioconductor, efforts were made to version S4 classes. This was done in
anticipation of changes in class definitions. This actually happens. For example, the ExpressionSet
class has changed definition at least one time, and at the time of writing, the SummarizedExperiment
class is undergoing changes to its internal structure between Bioconductor 3.1 and 3.2. It was later
realized that we do seldom change class definitions, so the versioning was abandoned. You see debris
from this in the .__classVersion__ slot of the ExpressionSet class.

23.8 S4 Methods

You can think of S4 methods as simple functions. A method is a function which can look at its
arguments and decide what to do. One way to mimic a method is by a function definition like the
following
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> mimicMethod <- function(x) {

+ if (is(x, "matrix"))

+ method1(x)

+ if (is(x, "data.frame"))

+ method2(x)

+ if (is(x, "IRanges"))

+ method3(x)

+ }

This function examines the x argument and runs different sets of code (method1, method2, method3)
depending on which class x is.

An example of this is as.data.frame.

> as.data.frame

standardGeneric for "as.data.frame" defined from package "BiocGenerics"

function (x, row.names = NULL, optional = FALSE, ...)

standardGeneric("as.data.frame")

<environment: 0x7f9f81a1d108>

Methods may be defined for arguments: x

Use showMethods("as.data.frame") for currently available ones.

In the output you can see that it is so-called “generic” method involved something called standard-
Generic(). Don’t be distracted by this lingo; this is just like the mimicMethod function defined above.
To see method1, method2 etc you do

> showMethods("as.data.frame")

Function: as.data.frame (package BiocGenerics)

x="ANY"

x="DataFrame"

x="DataTable"

x="GappedRanges"

x="GenomicRanges"

x="GPos"

x="GroupedIRanges"

x="Hits"

x="List"

x="Pairs"

x="RangedData"

x="Ranges"

x="Rle"

x="Seqinfo"

x="Vector"
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The different values of x here are called “signatures”.

Actually, this does not show you the actual methods, it just shows you which values of x a method
has been defined for. To see the code, do

> getMethod("as.data.frame", "DataFrame")

Method Definition:

function (x, row.names = NULL, optional = FALSE, ...)

{

if (length(list(...)))

warning("Arguments in '...' ignored")

l <- as(x, "list")

if (is.null(row.names))

row.names <- rownames(x)

if (!length(l) && is.null(row.names))

row.names <- seq_len(nrow(x))

l <- lapply(l, function(y) {

if (is(y, "SimpleList") || is(y, "CompressedList"))

y <- as.list(y)

if (is.list(y))

y <- I(y)

y

})

IRanges.data.frame <- injectIntoScope(data.frame, as.data.frame)

do.call(IRanges.data.frame, c(l, list(row.names = row.names),

check.names = !optional, stringsAsFactors = FALSE))

}

<environment: namespace:S4Vectors>

Signatures:

x

target "DataFrame"

defined "DataFrame"

Lingo - as.data.frame is a generic method. It operatures on different signatures (values of x) and
each signature has an associated method. This method is said to “dispatch” on x.

Many Bioconductor packages uses S4 classes extensively and S4 methods sparringly; I tend to follow
this paradigm. S4 methods are particularly useful when

1. there aremany different values if the argumentwhich needs to be handled (like as.data.frame
above.
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2. you want to mimic functions from base R.

The second point is the case for, for example, the IRanges andGenomicRanges packages. The IRanges
class looks very much like a standard vector and extensive work has gone into making it feel like a
standard vector.

For as.data.frame, you can see that the value of this function in base R is not a method, by

> base::as.data.frame

function (x, row.names = NULL, optional = FALSE, ...)

{

if (is.null(x))

return(as.data.frame(list()))

UseMethod("as.data.frame")

}

<bytecode: 0x7f9f808f5298>

<environment: namespace:base>

What happens is that the BiocGenerics converts the base R function as.data.frame into a generic
method. This is what you get notified about when the following is printed when you load
BiocGenerics (typically as by-product of loading another Biconductor package such as IRanges.

The following objects are masked from 'package:base':

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, as.vector, cbind, colnames, do.call, duplicated,

eval, evalq, get, intersect, is.unsorted, lapply, mapply, match,

mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,

rep.int, rownames, sapply, setdiff, sort, table, tapply, union,

unique, unlist, unsplit

There are drwabacks to methods:

1. It is hard (but not impossible) to get the actual code.
2. The help system can be confusing.
3. They are hard to debug for non-package authors.

We have addressed (1) above. The problemwith the help system is that eachmethod of as.data.frame
may have its own help page, sometimes in different packages. Furthermore, each method may have
different arguments.

The correct way to look up a help page for a method is
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> method?"as.data.frame,DataFrame"

> ?"as.data.frame-method,DataFrame"

which is quite a mothful. This becomes worse when there is dispatching on multiple arguments; a
great example is

> showMethods("findOverlaps")

Function: findOverlaps (package IRanges)

query="ANY", subject="Pairs"

query="GenomicRanges", subject="GenomicRanges"

query="GenomicRanges", subject="GRangesList"

query="GRangesList", subject="GenomicRanges"

query="GRangesList", subject="GRangesList"

query="integer", subject="Ranges"

query="Pairs", subject="ANY"

query="Pairs", subject="missing"

query="Pairs", subject="Pairs"

query="RangedData", subject="GenomicRanges"

query="RangedData", subject="RangedData"

query="RangedData", subject="RangesList"

query="Ranges", subject="Ranges"

query="RangesList", subject="RangedData"

query="RangesList", subject="RangesList"

query="Vector", subject="missing"

query="Vector", subject="Views"

query="Vector", subject="ViewsList"

query="Views", subject="Vector"

query="Views", subject="Views"

query="ViewsList", subject="Vector"

query="ViewsList", subject="ViewsList"

Finding the right help page for a method is (in my opinion) currently much harder than it ought to
be; console yourself that many people struggle with this.

findOverlaps is also an example where two different methods of the generic have different
arguments, although it becomes extremely confusing to illustrate how findOverlaps only accepts
ignore.strandwhen the argument is a GRanges and not an IRanges. You cannot see it in the method
arguments; you need to read the code itself (or the help page):
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> getMethod("findOverlaps", signature(query = "Ranges", subject = "Ranges"))

Method Definition:

function (query, subject, maxgap = 0L, minoverlap = 1L, type = c("any",

"start", "end", "within", "equal"), select = c("all", "first",

"last", "arbitrary"), ...)

{

.local <- function (query, subject, maxgap = 0L, minoverlap = 1L,

type = c("any", "start", "end", "within", "equal"), select = c("all",

"first", "last", "arbitrary"))

{

type <- match.arg(type)

select <- match.arg(select)

findOverlaps_NCList(query, subject, maxgap = maxgap,

minoverlap = minoverlap, type = type, select = select)

}

.local(query, subject, maxgap, minoverlap, type, select,

...)

}

<environment: namespace:IRanges>

Signatures:

query subject

target "Ranges" "Ranges"

defined "Ranges" "Ranges"

> getMethod("findOverlaps", signature(query = "GenomicRanges", subject = "Genomi\

cRanges"))

Method Definition:

function (query, subject, maxgap = 0L, minoverlap = 1L, type = c("any",

"start", "end", "within", "equal"), select = c("all", "first",

"last", "arbitrary"), ...)

{

.local <- function (query, subject, maxgap = 0L, minoverlap = 1L,

type = c("any", "start", "end", "within", "equal"), select = c("all",

"first", "last", "arbitrary"), ignore.strand = FALSE)

{

type <- match.arg(type)

select <- match.arg(select)

findOverlaps_GNCList(query, subject, maxgap = maxgap,

minoverlap = minoverlap, type = type, select = select,

ignore.strand = ignore.strand)
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}

.local(query, subject, maxgap, minoverlap, type, select,

...)

}

<environment: namespace:GenomicRanges>

Signatures:

query subject

target "GenomicRanges" "GenomicRanges"

defined "GenomicRanges" "GenomicRanges"

This is (in some ways) a great illustration of how confusing methods can be! The good thing is that
they tend to “just work”.



24. Getting Data into Bioconductor
Watch a video¹ of this chapter.

24.1 Dependencies

This document has no dependencies.

24.2 Overview

How do you get your data into R/Bioconductor? The answer obviously depends on the file format
of the data, but also what what you want to do with the data. Generally speaking, you need access
to the data file and then you need to put the data into a relevant data container. Examples of data
containers are ExpressionSet and SummarizedExperiment, but also classes such as GRanges.

Bioinformatics has jokingly been referred to as “The Science of Inventing New File Formats”. This
joke exemplifies the myriad of different file formats in use. Because we use many file formats and
different types of data, it is hard to comprehensively cover all file formats and data types.

In general, a lot of useful solutions exists in domain / application specific packages. As an example
of this paradigm, the affxparser package provides tools for parsing Affymetrix CEL files. However,
this package is a parsing library and returns the data in a less useful representation. An end-user
should instead use the oligo package which uses affxparser to read the data and then puts the data
inside a useful data container; ready for downstream analysis.

24.3 Application Area

Microarray Data

Most microarray data is available to end users through a vendor specific file format such as CEL
(Affymetrix) or IDAT (Illumina). These file formats can be read using vendor specific packages such
as

• affyio
• affxparser

¹https://youtu.be/mXg_YqSVpwM
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• illuminaio

These packages are very low-level. In practice, many analysis specific packages supports import of
these files into useful data structures, and you are much better off using one of those packages. For
example

• affy for Affymetrix Gene Expression data.
• oligo for Affymetrix and Nimblegen expression and SNP array data.
• lumi for Illumina arrays.
• minfi for Illumina DNA methylation arrays (the 450k and 27k arrays).

High-throughput sequencing

Raw (unmapped) reads are typically available in the FASTQ format.

The first step in most analyses is mapping the reads onto a genome. For aligned reads, the BAM
(SAM) format is now a clear standard.

However BAM (and SAM and FASTQ) files are quite big and still represents the data in a
format which requires further processing before analysis. However, this further processing vary
by application area (ChIP, RNA, DNA etc). Additionally, there are very few standard processed file
formats; an example of such a standard format is BigWig. As an example of the lack of standards,
there is still no standard file format representing RNA-seq reads summarized at the gene or transcript
level; different pipelines provide different sorts of file. Luckily, these files are usually text files
and can be read with standard tools for processing text files.ation from UCSC including UCSC
tables can be accessed from the same package, for example by using the functions getTable() and
ucscTableQuery().

There is also support for parsing GFF (Genome File Format) in rtracklayer.

24.4 File types

FASTQ files

These file represent sequencing reads, often from an Illumina sequencer. See the ShortRead package.

BAM / SAM files

This fileformat contains reads aligned to a reference genome. See the Biocpkg("Rsamtools")

package.
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VCF files

VCF (Variant Call Format) files represents genotype files, typically produced by running a genotyp-
ing pipeline on high-throughout sequencing data. This format has a binary version called BCF. Use
the functionality in VariantAnnotation to access these files.

UCSC Genome Browser formats

These formats include

• Wig and BigWig
• Bed and BigBed
• bedGraph

and can be read using the rtracklayer package, which also contains support for GFF files (annotation
files).

Text files

An important special case is simple text files, either separated by TAB or , and then often named
TSV (tab separated values) or CSV (comma separated values).

The base R function for reading these types of files is the versatile, but slow, read.table(). It has a
large number of arguments, and can be customized to read most files. Pay attention to the following
arguments

• sep: the separator
• comment.char: commenting out lines, for example header line.
• colClasses: if you know the class of the different columns in the file, you can speed up the
function substantially.

• quote: the default value is '" which can cause problems in genomics due to the use of 3â€™
and 5â€™.

• row.names, col.names
• skip, nrows, fill: reading part of the file.

For extremely complicated files you can use readLines()which reads the file into a character vector.

While read.table() is a classic, there are never, faster and more convenient functions which you
should get to know.

The readr² package has functions read_tsv(), read_csv() and more general read_delim(). These
functions are much faster than read.table() and support connections.

²http://cran.fhcrc.org/web/packages/readr/index.html

http://cran.fhcrc.org/web/packages/readr/index.html
http://cran.fhcrc.org/web/packages/readr/index.html
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The data.table³ package has the fread() function which is the fastest parser I know of, but is less
flexible than the functions in readr⁴.

24.5 Get data from databases of publicly available data

A number of data repositories have software packages dedicated to accessing the data inside of them:

• NCBI GEO⁵ (Gene Expression Omnibus): the GEOquery package.
• NCBI SRA⁶ (Short Read Archive): the SRAdb package.
• EBI ArrayExpress⁷: the ArrayExpress package.

³http://cran.fhcrc.org/web/packages/data.table/index.html
⁴http://cran.fhcrc.org/web/packages/readr/index.html
⁵http://www.ncbi.nlm.nih.gov/geo/
⁶http://www.ncbi.nlm.nih.gov/sra
⁷https://www.ebi.ac.uk/arrayexpress/

http://cran.fhcrc.org/web/packages/data.table/index.html
http://cran.fhcrc.org/web/packages/readr/index.html
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
http://cran.fhcrc.org/web/packages/data.table/index.html
http://cran.fhcrc.org/web/packages/readr/index.html
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/


25. ShortRead
Watch a video¹ of this chapter.

25.1 Dependencies

This document has the following dependencies:

> library(ShortRead)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("ShortRead"))

25.2 Overview

The ShortRead package contains functionality for reading and examining raw sequence reads
(typically in FASTQ format).

25.3 ShortRead

The ShortRead package was one of the first Bioconductor packages to deal with low-level analysis
of high-throughput sequencing data. Some of its functionality has now been superseded by other
packages, but there is still relevant functionality left.

25.4 Reading FASTQ files

The FASTQ file format is the standard way of representing raw (unaligned) next generation
sequencing reads, particular for the Illumina platform. The format basically consists of 4 lines per
read, with the lines containing

1. Read name (sometimes includes flowcell ID or other information).

¹https://youtu.be/dEDlER0ZNfA
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2. Read nucleotides
3. Either empty or a repeat of line 1
4. Encoded read quality scores

Paired-end reads are stored in two separate files, where the reads are ordered the same (this is
obviously fragile; what if reads are re-ordered in one file and not the other).

These files are read by readFastq() which produces an object of class ShortReadQ

> fastqDir <- system.file("extdata", "E-MTAB-1147", package = "ShortRead")

> fastqPath <- list.files(fastqDir, pattern = ".fastq.gz$", full = TRUE)[1]

> reads <- readFastq(fastqPath)

> reads

class: ShortReadQ

length: 20000 reads; width: 72 cycles

Here we directly point the function to the file path. A paradigm which is often used in Bioconductor
is to first put the file path into an object which represents a specific file type and then read it; see

> fqFile <- FastqFile(fastqPath)

> fqFile

class: FastqFile

path: /Library/Frameworks/R.framework/Versio.../ERR127302_1_subset.fastq.gz

isOpen: FALSE

> reads <- readFastq(fqFile)

This appears to make little sense in this situation, but for really big files it makes sense to access
them in chunks, see below for a BAM file example.

The ShortReadQ class is very similar to a DNAStringSet but it has two sets of strings: one for the
read nucleotides and one for the base qualities. They are accessed as

> sread(reads)[1:2]

A DNAStringSet instance of length 2

width seq

[1] 72 GTCTGCTGTATCTGTGTCGGCTGTCTCGCGG...CAATGAAGGCCTGGAATGTCACTACCCCCAG

[2] 72 CTAGGGCAATCTTTGCAGCAATGAATGCCAA...GTGGCTTTTGAGGCCAGAGCAGACCTTCGGG

> quality(reads)[1:2]

class: FastqQuality

quality:

A BStringSet instance of length 2

width seq
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[1] 72 HHHHHHHHHHHHHHHHHHHHEBDBB?B:BBG...FEFBDBD@DDECEE3>:?;@@@>?=BAB?##

[2] 72 IIIIHIIIGIIIIIIIHIIIIEGBGHIIIIH...IHIIIHIIIIIGIIIEGIIGBGE@DDGGGIG

> id(reads)[1:2]

A BStringSet instance of length 2

width seq

[1] 53 ERR127302.8493430 HWI-EAS350_0441:1:34:16191:2123#0/1

[2] 53 ERR127302.21406531 HWI-EAS350_0441:1:88:9330:2587#0/1

25.5 A word on quality scores

Note how the quality scores are listed as characters. You can convert them into standard 0-40 integer
quality scores by

> as(quality(reads), "matrix")[1:2,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 39 39 39 39 39 39 39 39 39 39

[2,] 40 40 40 40 39 40 40 40 38 40

In this conversion, each letter is matched to an integer between 0 and 40. This matching is known
as the “encoding” of the quality scores and there has been different ways to do this encoding.
Unfortunately, it is not stored in the FASTQ file which encoding is used, so you have to know
or guess the encoding. The ShortRead package does this for you.

These numbers are supposed to related to the probability that the reported base is different from the
template fragment (ie. a sequence error). One should be aware that this probabilistic interpretation
is not always true; methods such as “quality-remapping” helps to ensure this.

25.6 Reading alignment files

In the early days of next generation sequencing, there was no standardized alignment output format.
different aligners produced different output file, including Bowtie and MAQ. Later on, the SAM /
BAM format was introduced and this is now the standard alignment output. ShortRead contains
tools for reading these older alignment formats through the readAligned() function (the type

argument support options such as type="Bowtie" and type="MAQMap" and type="MAQMapShort").

The package has some very old support for parsing BAM files, but use Rsamtools andGenomicAlign-
ments for this task instead.

25.7 Other Resources

• The vignettes from the ShortRead package².

²http://bioconductor.org/packages/ShortRead

http://bioconductor.org/packages/ShortRead
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26. Rsamtools
Watch a video¹ of this chapter.

26.1 Dependencies

This document has the following dependencies:

> library(Rsamtools)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("Rsamtools"))

26.2 Overview

The Rsamtools packages contains functionality for reading and examining aligned reads in the BAM
format.

26.3 Rsamtools

The Rsamtools package is an interface to the widely used samtools/htslib library. The main
functionality of the package is support for reading BAM files.

26.4 The BAM / SAM file format

The SAM format is a text based representation of alignments. The BAM format is a binary version
of SAM which is smaller and much faster. In general, always work with BAM.

The format is quite complicated, which means the R representation is also a bit complicated. This
complication happens because of the following features of the file format

• It may contain unaligned sequences.

¹https://youtu.be/3T4mDPQ5hU8
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• Each sequence may be aligned to multiple locations.
• It supports spliced (split) alignments.
• It may contain reads from multiple samples.

We will not attempt to fully understanding all the intricacies of this format.

A BAM file can be sorted in multiple ways. If it is sorted according to genomic location and if it is
also “indexed” it is possible to retrieve all reads mapping to a genomic location, something which
can be very useful. In Rsamtools this is done by the functions sortBam() and indexBam().

26.5 scanBam

How to read a BAM file goes conceptually like this

1. A pointer to the file is created by the BamFile() constructor.
2. (Optional) Parameters for which reads to report is constructed by ScanBamParams().
3. The file is being read according to these parameters by scanBam().

First we setup a BamFile object:

> bamPath <- system.file("extdata", "ex1.bam", package="Rsamtools")

> bamFile <- BamFile(bamPath)

> bamFile

class: BamFile

path: /Library/Frameworks/R.framework/Versions/3.3/Resources/lib.../ex1.bam

index: /Library/Frameworks/R.framework/Versions/3.3/Resource.../ex1.bam.bai

isOpen: FALSE

yieldSize: NA

obeyQname: FALSE

asMates: FALSE

qnamePrefixEnd: NA

qnameSuffixStart: NA

Some high-level information can be accessed here, like
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> seqinfo(bamFile)

Seqinfo object with 2 sequences from an unspecified genome:

seqnames seqlengths isCircular genome

seq1 1575 NA <NA>

seq2 1584 NA <NA>

(obviously, seqinfo() and seqlevels() etc. are supported as well).

Now we read all the reads in the file using scanBam(), ignoring the possibility of selecting reads
using ScanBamParams() (we will return to this below).

> aln <- scanBam(bamFile)

> length(aln)

[1] 1

> class(aln)

[1] "list"

We get back a list of length 1; this is because scanBam() can return output from multiple genomic
regions, and here we have only one (everything). We therefore subset the output; this again gives us
a list and we show the information from the first alignment

> aln <- aln[[1]]

> names(aln)

[1] "qname" "flag" "rname" "strand" "pos" "qwidth" "mapq"

[8] "cigar" "mrnm" "mpos" "isize" "seq" "qual"

> lapply(aln, function(xx) xx[1])

$qname

[1] "B7_591:4:96:693:509"

$flag

[1] 73

$rname

[1] seq1

Levels: seq1 seq2

$strand

[1] +

Levels: + - *

$pos

[1] 1
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$qwidth

[1] 36

$mapq

[1] 99

$cigar

[1] "36M"

$mrnm

[1] <NA>

Levels: seq1 seq2

$mpos

[1] NA

$isize

[1] NA

$seq

A DNAStringSet instance of length 1

width seq

[1] 36 CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG

$qual

A PhredQuality instance of length 1

width seq

[1] 36 <<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7

Notice how the scanBam() function returns a basic R object, instead of an S4 class. Representing
the alignments as S4 object is done by the GenomicAlignments package; this is especially useful for
access to spliced alignments from RNA sequencing data.

The names of the aln list are basically the names used in the BAM specification. Here is a quick list
of some important ones

• qname: The name of the read.
• rname: The name of the chromosome / sequence / contig it was aligned to.
• strand: The strand of the alignment.
• pos: The coordinate of the left-most part of the alignment.
• qwidth: The length of the read.
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• mapq: The mapping quality of the alignment.
• seq: The actual sequence of the alignment.
• qual: The quality string of the alignment.
• cigar: The CIGAR string (below).
• flag: The flag (below).

26.6 Reading in parts of the file

BAM files can be extremely big and it is there often necessary to read in parts of the file. You can
do this in different ways

1. Read a set number of records (alignments).
2. Only read alignments satisfying certain criteria.
3. Only read alignments in certain genomic regions.

Let us start with the first of this. By specifying yieldSizewhen you use BamFile(), every invocation
of scanBam()will only read yieldSize number of alignments. You can then invoke scanBam() again
to get the next set of alignments; this requires you to open() the file first (otherwise you will keep
read the same alignments).

> yieldSize(bamFile) <- 1

> open(bamFile)

> scanBam(bamFile)[[1]]$seq

A DNAStringSet instance of length 1

width seq

[1] 36 CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG

> scanBam(bamFile)[[1]]$seq

A DNAStringSet instance of length 1

width seq

[1] 35 CTAGTGGCTCATTGTAAATGTGTGGTTTAACTCGT

> ## Cleanup

> close(bamFile)

> yieldSize(bamFile) <- NA

The other two ways of reading in parts of a BAM file is to use ScanBamParams(), specifically the
what and which arguments.
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> gr <- GRanges(seqnames = "seq2",

+ ranges = IRanges(start = c(100, 1000), end = c(1500,2000)))

> params <- ScanBamParam(which = gr, what = scanBamWhat())

> aln <- scanBam(bamFile, param = params)

> names(aln)

[1] "seq2:100-1500" "seq2:1000-2000"

> head(aln[[1]]$pos)

[1] 66 68 68 72 73 77

Notice how the pos is less than what is specified in the which argument; this is because the
alignments overlap the which argument. The what=scanBamWhat() tells the function to read
everything. Often, you may not be interested in the actual sequence of the read or its quality scores.
These takes up a lot of space so you may consider disabling reading this information.

The CIGAR string

The “CIGAR” is how the BAM format represents spliced alignments. For example, the format stored
the left most coordinate of the alignment. To get to the right coordinate, you have to parse the CIGAR
string. In this example “36M” means that it has been aligned with no insertions or deletions. If you
need to work with spliced alignments or alignments containing insertions or deletions, you should
use the GenomicAlignments package.

Flag

An alignment may have a number of “flags” set or unset. These flags provide information about the
alignment. The flag integer is a representation of multiple flags simultanously. An example of a flag
is indicating (for a paired end alignment) whether both pairs have been properly aligned. For more
information, see the BAM specification.

In Rsamtools there is a number of helper functions dealing with only reading certain flags; use these.

26.7 BAM summary

Sometimes you want a quick summary of the alignments in a BAM file:
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> quickBamFlagSummary(bamFile)

group | nb of | nb of | mean / max

of | records | unique | records per

records | in group | QNAMEs | unique QNAME

All records........................ A | 3307 | 1699 | 1.95 / 2

o template has single segment.... S | 0 | 0 | NA / NA

o template has multiple segments. M | 3307 | 1699 | 1.95 / 2

- first segment.............. F | 1654 | 1654 | 1 / 1

- last segment............... L | 1653 | 1653 | 1 / 1

- other segment.............. O | 0 | 0 | NA / NA

Note that (S, M) is a partitioning of A, and (F, L, O) is a partitioning of M.

Indentation reflects this.

Details for group M:

o record is mapped.............. M1 | 3271 | 1699 | 1.93 / 2

- primary alignment......... M2 | 3271 | 1699 | 1.93 / 2

- secondary alignment....... M3 | 0 | 0 | NA / NA

o record is unmapped............ M4 | 36 | 36 | 1 / 1

Details for group F:

o record is mapped.............. F1 | 1641 | 1641 | 1 / 1

- primary alignment......... F2 | 1641 | 1641 | 1 / 1

- secondary alignment....... F3 | 0 | 0 | NA / NA

o record is unmapped............ F4 | 13 | 13 | 1 / 1

Details for group L:

o record is mapped.............. L1 | 1630 | 1630 | 1 / 1

- primary alignment......... L2 | 1630 | 1630 | 1 / 1

- secondary alignment....... L3 | 0 | 0 | NA / NA

o record is unmapped............ L4 | 23 | 23 | 1 / 1

26.8 Other functionality from Rsamtools

BamViews

Instead of reading a single file, it is possible to construct something called a BamViews, a link to
multiple files. In many ways, it has the same Views functionality as other views. A quick example
should suffice, first we read everything;
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> bamView <- BamViews(bamPath)

> aln <- scanBam(bamView)

> names(aln)

[1] "ex1.bam"

This gives us an extra list level on the return object; first level is files, second level is ranges.

We can also set bamRanges() on the BamViews to specify that only certain ranges are read; this is
similar to setting a which argument to ScanBamParams().

> bamRanges(bamView) <- gr

> aln <- scanBam(bamView)

> names(aln)

[1] "ex1.bam"

> names(aln[[1]])

[1] "seq2:100-1500" "seq2:1000-2000"

countBam

Sometimes, all you want to do is countâ€¦ use countBam() instead of scanBam().

26.9 Other Resources

• The vignettes from the Rsamtools package².
• For representing more complicated alignments (specifically spliced alignments from RNA-
seq), see the GenomicAlignments package.

²http://bioconductor.org/packages/Rsamtools
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27. The oligo package
Watch a video¹ of this chapter.

27.1 Dependencies

This document has the following dependencies:

> library(oligo)

> library(GEOquery)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("oligo", "GEOquery"))

27.2 Overview

This document presents the oligo package for handling Affymetrix and Nimblegen microarrays,
especially gene expression, exon expression and SNP arrays.

27.3 Getting the data

We will use the dataset deposited as GEO accession number “GSE38792”. In this dataset, the
experimenters profiled fat biopsies from two different conditions: 10 patients with obstructive sleep
apnea (OSA) and 8 healthy controls.

The profiling was done using the Affymetrix Human Gene ST 1.0 array.

First we need to get the raw data; this will be a set of binary files in CEL format. There will be one
file per sample. The CEL files are accessible as supplementary information from GEO; we get the
files using GEOquery.

¹https://youtu.be/_pAtq0OC8Ro
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> library(GEOquery)

> getGEOSuppFiles("GSE38792")

> list.files("GSE38792")

[1] "CEL" "filelist.txt" "GSE38792_RAW.tar"

> untar("GSE38792/GSE38792_RAW.tar", exdir = "GSE38792/CEL")

> list.files("GSE38792/CEL")

[1] "GSM949164_Control1.CEL.gz" "GSM949166_Control2.CEL.gz"

[3] "GSM949168_Control3.CEL.gz" "GSM949169_Control4.CEL.gz"

[5] "GSM949170_Control5.CEL.gz" "GSM949171_Control6.CEL.gz"

[7] "GSM949172_Control7.CEL.gz" "GSM949173_Control8.CEL.gz"

[9] "GSM949174_OSA1.CEL.gz" "GSM949175_OSA2.CEL.gz"

[11] "GSM949176_OSA3.CEL.gz" "GSM949177_OSA4.CEL.gz"

[13] "GSM949178_OSA5.CEL.gz" "GSM949179_OSA6.CEL.gz"

[15] "GSM949180_OSA7.CEL.gz" "GSM949181_OSA8.CEL.gz"

[17] "GSM949182_OSA9.CEL.gz" "GSM949183_OSA10.CEL.gz"

oligo and many other packages of its kind has convenience functions for reading in many files at
once. In this case we construct a vector of filenames and feed it to read.celfiles().

> library(oligo)

> celfiles <- list.files("GSE38792/CEL", full = TRUE)

> rawData <- read.celfiles(celfiles)

Reading in : GSE38792/CEL/GSM949164_Control1.CEL.gz

Reading in : GSE38792/CEL/GSM949166_Control2.CEL.gz

Reading in : GSE38792/CEL/GSM949168_Control3.CEL.gz

Reading in : GSE38792/CEL/GSM949169_Control4.CEL.gz

Reading in : GSE38792/CEL/GSM949170_Control5.CEL.gz

Reading in : GSE38792/CEL/GSM949171_Control6.CEL.gz

Reading in : GSE38792/CEL/GSM949172_Control7.CEL.gz

Reading in : GSE38792/CEL/GSM949173_Control8.CEL.gz

Reading in : GSE38792/CEL/GSM949174_OSA1.CEL.gz

Reading in : GSE38792/CEL/GSM949175_OSA2.CEL.gz

Reading in : GSE38792/CEL/GSM949176_OSA3.CEL.gz

Reading in : GSE38792/CEL/GSM949177_OSA4.CEL.gz

Reading in : GSE38792/CEL/GSM949178_OSA5.CEL.gz

Reading in : GSE38792/CEL/GSM949179_OSA6.CEL.gz

Reading in : GSE38792/CEL/GSM949180_OSA7.CEL.gz

Reading in : GSE38792/CEL/GSM949181_OSA8.CEL.gz

Reading in : GSE38792/CEL/GSM949182_OSA9.CEL.gz

Reading in : GSE38792/CEL/GSM949183_OSA10.CEL.gz
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> rawData

GeneFeatureSet (storageMode: lockedEnvironment)

assayData: 1102500 features, 18 samples

element names: exprs

protocolData

rowNames: GSM949164_Control1.CEL.gz GSM949166_Control2.CEL.gz

... GSM949183_OSA10.CEL.gz (18 total)

varLabels: exprs dates

varMetadata: labelDescription channel

phenoData

rowNames: GSM949164_Control1.CEL.gz GSM949166_Control2.CEL.gz

... GSM949183_OSA10.CEL.gz (18 total)

varLabels: index

varMetadata: labelDescription channel

featureData: none

experimentData: use 'experimentData(object)'

Annotation: pd.hugene.1.0.st.v1

This is in the form of an GeneFeatureSet; which is an ExpressionSet-like container. Knowing a bit
of S4, we can see this through the class definition

> getClass("GeneFeatureSet")

Class "GeneFeatureSet" [package "oligoClasses"]

Slots:

Name: manufacturer intensityFile assayData

Class: character character AssayData

Name: phenoData featureData experimentData

Class: AnnotatedDataFrame AnnotatedDataFrame MIAxE

Name: annotation protocolData .__classVersion__

Class: character AnnotatedDataFrame Versions

Extends:

Class "FeatureSet", directly

Class "NChannelSet", by class "FeatureSet", distance 2

Class "eSet", by class "FeatureSet", distance 3

Class "VersionedBiobase", by class "FeatureSet", distance 4

Class "Versioned", by class "FeatureSet", distance 5
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We see that this is a special case of a FeatureSet which is a special case of NChannelSet which is
an eSet. We can see the intensity measures by

> exprs(rawData)[1:4,1:3]

GSM949164_Control1.CEL.gz GSM949166_Control2.CEL.gz

1 9411 9917

2 255 200

3 9171 9202

4 229 220

GSM949168_Control3.CEL.gz

1 8891

2 181

3 9266

4 202

We see this is raw intensity data; the unit of measure is integer measurements on a 16 bit scanner,
so we get values between 0 and $2ˆ16=65,536$. This is easily verifiable:

> max(exprs(rawData))

[1] 65534

Note the large number of features in this dataset, more than 1 million. Because of the manufacturing
technology, Affymetrix can only make very short oligos (around 25bp) but can make them cheaply
and at high quality. The short oligos means that the binding specificity of the oligo is not very good.
To compensate for this, Affymetrix uses a design where a gene is being measured by many different
probes simultaneously; this is called a probeset. As part of the preprocessing step for Affymetrix
arrays, the measurements for all probes in a probeset needs to be combined into one expression
measure.

Let us clean up the phenotype information for rawData.

> filename <- sampleNames(rawData)

> pData(rawData)$filename <- filename

> sampleNames <- sub(".*_", "", filename)

> sampleNames <- sub(".CEL.gz$", "", sampleNames)

> sampleNames(rawData) <- sampleNames

> pData(rawData)$group <- ifelse(grepl("^OSA", sampleNames(rawData)),

+ "OSA", "Control")

> pData(rawData)

index filename group

Control1 1 GSM949164_Control1.CEL.gz Control

Control2 2 GSM949166_Control2.CEL.gz Control
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Control3 3 GSM949168_Control3.CEL.gz Control

Control4 4 GSM949169_Control4.CEL.gz Control

Control5 5 GSM949170_Control5.CEL.gz Control

Control6 6 GSM949171_Control6.CEL.gz Control

Control7 7 GSM949172_Control7.CEL.gz Control

Control8 8 GSM949173_Control8.CEL.gz Control

OSA1 9 GSM949174_OSA1.CEL.gz OSA

OSA2 10 GSM949175_OSA2.CEL.gz OSA

OSA3 11 GSM949176_OSA3.CEL.gz OSA

OSA4 12 GSM949177_OSA4.CEL.gz OSA

OSA5 13 GSM949178_OSA5.CEL.gz OSA

OSA6 14 GSM949179_OSA6.CEL.gz OSA

OSA7 15 GSM949180_OSA7.CEL.gz OSA

OSA8 16 GSM949181_OSA8.CEL.gz OSA

OSA9 17 GSM949182_OSA9.CEL.gz OSA

OSA10 18 GSM949183_OSA10.CEL.gz OSA

27.4 Normalization

Let us look at the probe intensities across the samples, using the boxplot() function.

> boxplot(rawData, target = "core")
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Boxplots of the raw data.

Boxplots are great for comparing many samples because it is easy to display many box plots side by
side. We see there is a large difference in both location and spread between samples. There are three
samples with very low intensities; almost all probes have intensities less than 7 on the log2 scale.
From experience with Affymetrix microarrays, I know this is an extremely low intensity. Perhaps
the array hybridization failed for these arrays. To determine this will require more investigation.

A classic and powerful method for preprocessing Affymetrix gene expression arrays is the RMA
method. Experience tells us that RMA essentially always performs well so many people prefer this
method; one can argue that it is better to use a method which always does well as opposed to a
method which does extremely well on some datasets and poorly on others.

The RMA method was originally implemented in the affy package which has later been supplanted
by the oligo package. The data we are analyzing comes from a “new” style Affymetrix array based
on random priming; the affy package does not support these types of arrays. It is extremely easy to
run RMA:
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> normData <- rma(rawData)

Background correcting

Normalizing

Calculating Expression

> normData

ExpressionSet (storageMode: lockedEnvironment)

assayData: 33297 features, 18 samples

element names: exprs

protocolData

rowNames: Control1 Control2 ... OSA10 (18 total)

varLabels: exprs dates

varMetadata: labelDescription channel

phenoData

rowNames: Control1 Control2 ... OSA10 (18 total)

varLabels: index filename group

varMetadata: labelDescription channel

featureData: none

experimentData: use 'experimentData(object)'

Annotation: pd.hugene.1.0.st.v1

Note how normData has on the order of 33k features which is closer to the number of genes in the
human genome.

We can check the performance of RMA by looking at boxplots again.

> boxplot(normData)



The oligo package 162

Boxplots of the data preprocessed using RMA.

Here, it is important to remember that the first set of boxplots is at the probe level (\∼1M probes)
whereas the second set of boxplots is at the probeset level (\∼33k probesets), so they display data at
different summarization levels. However, what matters for analysis is that the probe distributions
are normalized across samples and at a first glance it looks ok. One can see that the 3 suspicious
samples from before still are slightly different, but that at least 2 more samples are similar to those.

For the normalization-interested person, note that while the distributions are similar, they are
not identical despite the fact that RMA includes quantile normalization. This is because quantile
normalization is done prior to probe summarization; if you quantile normalize different distributions
they are guaranteed to have the same distribution afterwards.

The data is now ready for differential expression analysis.

27.5 Other Resources

• The vignettes from the oligo package².

²http://bioconductor.org/packages/oligo

http://bioconductor.org/packages/oligo
http://bioconductor.org/packages/oligo


28. limma
Watch a video¹ of this chapter.

28.1 Dependencies

This document has the following dependencies:

> library(limma)

> library(leukemiasEset)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("limma", "leukemiasEset"))

28.2 Overview

limma is a very popular package for analyzing microarray and RNA-seq data.

LIMMA stands for “linear models for microarray data”. Perhaps unsurprisingly, limma contains
functionality for fitting a broad class of statistical models called “linear models”. Examples of such
models include linear regression and analysis of variance. While most of the functionality of limma
has been developed for microarray data, the model fitting routines of limma are useful for many
types of data, and is not limited to microarrays. For example, I am using limma in my research on
analysis of DNA methylation.

28.3 Analysis Setup and Design

(The discussion in this section is not specific to limma.)

A very common analysis setup is having access to a matrix of numeric values representing some
measurements; an example is gene expression. Traditionally in Bioconductor, and in computational
biology more generally, columns of this matrix are samples and rows of the matrix are features.
Features can be many things; in gene expression a feature is a gene. The feature by sample layout

¹https://youtu.be/ZRet1oeGiUU
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in Bioconductor is the transpose of the layout in classic statistics where the matrix is samples by
features; this sometimes cause confusion.

A very common case of this type of data is gene expression data (either from microarrays or from
RNA sequencing) where the features are individual genes.

Samples are usually few (usually less than a hundred, almost always less than a thousand) and are
often grouped; arguably the most common setup is having samples from two different groups which
we can call cases and controls. The objective of an analysis is frequently to discover which features
(genes) are different between groups or stated differently: to discover which genes are differentially
expressed between cases and controls. Of course, more complicated designs are also used; sometimes
more than two groups are considered and sometimes there are additional important covariates such
as age or sex. An example of a more complicated design is a time series experiment where each time
point is a group and where it is sometimes important to account for the time elapsed between time
points.

Broadly speaking, how samples are distributed between groups determines the design of the study.
In addition to the design, there is one ormore question(s) of interest(s) such as the difference between
two groups. Such questions are usually formalized as contrasts; an example of a contrast is indeed
the difference between two groups.

Samples are usually assumed to be independent but are sometimes paired; an example of pairing
is when a normal and a cancer sample from the same patient is available. Pairing allows for more
efficient inference because each sample has a sample specific control. If only some samples are
paired, or if multiple co-linked samples exists, it becomes harder (but usually possible) to account
for this structure in the statistical model.

As stated above, the most common design is a two group design with unpaired samples.

Features are often genes or genomic intervals, for example different promoters or genomic bins.
The data is often gene expression data but could be histone modification abundances or even
measurements from a Hi-C contact matrix.

Common to all these cases is the rectangular data structure (the matrix) with samples on columns
and features on rows. This is exactly the data structure which is represented by an ExpressionSet

or a SummarizedExperiment.

A number of different packages allows us to fit common types of models to this data structure

• limma fits a so-called linear model; examples of linear models are (1) linear regression, (2)
multiple linear regression and (3) analysis of variance.

• edgeR, DESeq and DESeq2 fits generalized linear models, specifically models based on the
negative binomial distribution.

Extremely simplified, limma is useful for continuous data such asmicroarray data and edgeR /DESeq
/ DESeq2 are useful for count data such as high-throughput sequencing. But that is a very simplified
statement.



limma 165

In addition to the distributional assumptions, all of these packages uses something called empirical
Bayes techniques to borrow information across features. As stated above, usually the number of
samples is small and the number of features is large. It has been shown time and time again that you
can get better results by borrowing information across features, for example by modeling a mean-
variance relationship. This can be done in many ways and often depends on the data characteristics
of a specific type of data. For example both edgeR and DESeq(2) are very popular in the analysis of
RNA-seq data and all three packages uses models based on the negative binomial distribution. For
a statistical point of view, a main difference between these packages (models) is how they borrow
information across genes.

Fully understanding these classes of models as well as their strengths and limitations are beyond
our scope. But we will still introduce aspects of these packages because they are so widely used.

28.4 A two group comparison

Obtaining data

Let us use the leukemiasEset dataset from the leukemiasEset² package; this is an ExpressionSet.

> library(leukemiasEset)

> data(leukemiasEset)

> leukemiasEset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 20172 features, 60 samples

element names: exprs, se.exprs

protocolData

sampleNames: GSM330151.CEL GSM330153.CEL ... GSM331677.CEL (60

total)

varLabels: ScanDate

varMetadata: labelDescription

phenoData

sampleNames: GSM330151.CEL GSM330153.CEL ... GSM331677.CEL (60

total)

varLabels: Project Tissue ... Subtype (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: genemapperhgu133plus2

> table(leukemiasEset$LeukemiaType)

²http://bioconductor.org/packages/leukemiasEset

http://bioconductor.org/packages/leukemiasEset
http://bioconductor.org/packages/leukemiasEset
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ALL AML CLL CML NoL

12 12 12 12 12

This is data on different types of leukemia. The code NoL means not leukemia, ie. normal controls.

Let us ask which genes are differentially expressed between the ALL type and normal controls. First
we subset the data and clean it up

> ourData <- leukemiasEset[, leukemiasEset$LeukemiaType %in% c("ALL", "NoL")]

> ourData$LeukemiaType <- factor(ourData$LeukemiaType)

A linear model

Now we do a standard limma model fit

> design <- model.matrix(~ ourData$LeukemiaType)

> fit <- lmFit(ourData, design)

> fit <- eBayes(fit)

> topTable(fit)

logFC AveExpr t P.Value adj.P.Val

ENSG00000163751 4.089587 5.819472 22.51729 9.894742e-18 1.733025e-13

ENSG00000104043 4.519488 5.762115 21.98550 1.718248e-17 1.733025e-13

ENSG00000008394 5.267835 7.482490 20.08250 1.374231e-16 9.240332e-13

ENSG00000165140 3.206807 6.560163 19.41855 2.959391e-16 1.492421e-12

ENSG00000204103 4.786273 7.774809 19.04041 4.628812e-16 1.867448e-12

ENSG00000145569 2.845963 5.958707 18.46886 9.239404e-16 3.067090e-12

ENSG00000038427 5.047670 6.496822 18.35375 1.064328e-15 3.067090e-12

ENSG00000173391 4.282498 5.293222 17.89645 1.881511e-15 4.744229e-12

ENSG00000138449 5.295928 6.999716 17.79655 2.134448e-15 4.784010e-12

ENSG00000105352 2.521351 7.054018 17.62423 2.657074e-15 5.359850e-12

B

ENSG00000163751 30.15253

ENSG00000104043 29.65066

ENSG00000008394 27.73589

ENSG00000165140 27.02056

ENSG00000204103 26.60138

ENSG00000145569 25.95084

ENSG00000038427 25.81729

ENSG00000173391 25.27803

ENSG00000138449 25.15836

ENSG00000105352 24.95031
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What happens here is a common limma (and friends) workflow. First, the comparison of interest (and
the design of the experiment) is defined through a so-called “design matrix”. This matrix basically
encompasses everything we know about the design; in this case there are two groups (we have more
to say on the design below). Next, the model is fitted. This is followed by borrowing strength across
genes using a so-called empirical Bayes procedure (this is the step in limma which really works
wonders). Because this design only has two groups there is only one possible comparison to make:
which genes differs between the two groups. This question is examined by the topTable() function
which lists the top differentially expressed genes. In a more complicated design, the topTable()

function would need to be told which comparison of interest to summarize.

An important part of the output is logFC which is the log fold-change. To interpret the sign of this
quantity you need to know if this is ALL-NoL (in which case positive values are up-regulated in ALL)
or the reverse. In this case this is determined by the reference level which is the first level of the
factor.

> ourData$LeukemiaType

[1] ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL NoL NoL NoL NoL NoL

[18] NoL NoL NoL NoL NoL NoL NoL

Levels: ALL NoL

we see the reference level is ALL so positive values means it is down-regulated in cancer. You can
change the reference level of a factor using the relevel() function. You can also confirm this by
computing the logFC by hand, which is useful to know. Let’s compute the fold-change of the top
differentially expressed gene:

> topTable(fit, n = 1)

logFC AveExpr t P.Value adj.P.Val

ENSG00000163751 4.089587 5.819472 22.51729 9.894742e-18 1.733025e-13

B

ENSG00000163751 30.15253

> genename <- rownames(topTable(fit, n=1))

> typeMean <- tapply(exprs(ourData)[genename,], ourData$LeukemiaType, mean)

> typeMean

ALL NoL

3.774678 7.864265

> typeMean["NoL"] - typeMean["ALL"]

NoL

4.089587

confirming the statement. It is sometimes useful to check things by hand to make sure you have
the right interpretation. Finally, note that limma doesn’t do anything different from a difference
of means when it computes logFC; all the statistical improvements centers on computing better
t-statistics and p-values.
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The reader who has some experience with statistics will note that all we are doing is comparing two
groups; this is the same setup as the classic t-statistic. What we are computing here is indeed a t-
statistic, but one where the variance estimation (the denominator of the t-statistics) ismoderated by
borrowing strength across genes (this is what eBayes() does); this is called a moderated t-statistic.

The output from topTable() includes

• logFC: the log fold-change between cases and controls.
• t: the t-statistic used to assess differential expression.
• P.Value: the p-value for differential expression; this value is not adjusted for multiple testing.
• adj.P.Val: the p-value adjusted for multiple testing. Different adjustment methods are
available, the default is Benjamini-Horchberg.

How to setup and interpret a design matrix for more complicated designs is beyond the scope of
this course. The limma User’s Guide is extremely helpful here. Also, note that setting up a design
matrix for an experiment is a standard task in statistics (and requires very little knowledge about
genomics), so other sources of help is a local, friendly statistician or text books on basic statistics.

28.5 More on the design

In the analysis in the preceding section we setup our model like this

> design <- model.matrix(~ ourData$LeukemiaType)

and the we use F-statistics to get at our question of interest. We can it this easily because there is
only really one interesting question for this design: is there differential expression between the two
groups. But this formulation did not use contrasts; in the “Analysis Setup and Design” section we
discussed how one specifies the question of interest using contrasts and we did not really do this
here.

Let’s try. A contrast is interpreted relative to the design matrix one uses. One conceptual design may
be represented by different design matrices, which is one of the reasons why design matrices and
contrasts take a while to absorb.

Let’s have a look
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> head(design)

(Intercept) ourData$LeukemiaTypeNoL

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

This matrix has two columns because there are two parameters in this conceptual design: the
expression level in each of the two groups. In this parametrization column 1 represents the
expression of the ALL group and column 2 represents the difference in expression level from the
NoL group to the ALL group. Testing that the two groups have the same expression level is done by
testing whether the second parameter (equal to the difference in expression between the two groups)
is equal to zero.

A different parametrization is

> design2 <- model.matrix(~ ourData$LeukemiaType - 1)

> head(design2)

ourData$LeukemiaTypeALL ourData$LeukemiaTypeNoL

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

> colnames(design2) <- c("ALL", "NoL")

In this design, the two parameters corresponding to the two columns of the design matrix, represents
the expression levels in the two groups. And the scientific question gets translated into asking
whether or not these two parameters are the same. Let us see how we form a contrast matrix for
this

> fit2 <- lmFit(ourData, design2)

> contrast.matrix <- makeContrasts("ALL-NoL", levels = design2)

> contrast.matrix

Contrasts

Levels ALL-NoL

ALL 1

NoL -1

Here we say we are interested in ALL-NoLwhich has the opposite sign of what we were doing above
(where it was NoL-ALL; since NoL is the natural reference group this makes a lot more sense. Now
we fit
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> fit2C <- contrasts.fit(fit2, contrast.matrix)

> fit2C <- eBayes(fit2C)

> topTable(fit2C)

logFC AveExpr t P.Value adj.P.Val

ENSG00000163751 -4.089587 5.819472 -22.51729 9.894742e-18 1.733025e-13

ENSG00000104043 -4.519488 5.762115 -21.98550 1.718248e-17 1.733025e-13

ENSG00000008394 -5.267835 7.482490 -20.08250 1.374231e-16 9.240332e-13

ENSG00000165140 -3.206807 6.560163 -19.41855 2.959391e-16 1.492421e-12

ENSG00000204103 -4.786273 7.774809 -19.04041 4.628812e-16 1.867448e-12

ENSG00000145569 -2.845963 5.958707 -18.46886 9.239404e-16 3.067090e-12

ENSG00000038427 -5.047670 6.496822 -18.35375 1.064328e-15 3.067090e-12

ENSG00000173391 -4.282498 5.293222 -17.89645 1.881511e-15 4.744229e-12

ENSG00000138449 -5.295928 6.999716 -17.79655 2.134448e-15 4.784010e-12

ENSG00000105352 -2.521351 7.054018 -17.62423 2.657074e-15 5.359850e-12

B

ENSG00000163751 30.15253

ENSG00000104043 29.65066

ENSG00000008394 27.73589

ENSG00000165140 27.02056

ENSG00000204103 26.60138

ENSG00000145569 25.95084

ENSG00000038427 25.81729

ENSG00000173391 25.27803

ENSG00000138449 25.15836

ENSG00000105352 24.95031

Note that this is exactly the same output from topTable() as above, except for the sign of the logFC
column.

28.6 Background: Data representation in limma

As we see above, limma works directly on ExpressionSets. It also works directly on matrices. But
limma also have a class RGListwhich represents a two-colormicroarray. The basic data stored in this
class is very ExpressionSet-like, but it has at least two matrices of expression measurements R (Red)
and G (Green) and optionally two additional matrices of background estimates (Rb and Gb). It has a
slot called genes which is basically equivalent to featureData for ExpressionSets (ie. information
about which genes are measured on the microarray) as well as a targets slot which is basically the
pData information from ExpressionSet.
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28.7 Background: The targets file

limma introduced the concept of a so-called targets file. This is just a simple text file (usually TAB
or comma-separated) which holds the phenotype data. The idea is that it is easier for many users to
create this text file in a spreadsheet program, and then read it into R and stored the information in
the data object.

28.8 Other Resources

The limma User’s Guide from the limma webpage³. This is an outstanding piece of documentation
which has (rightly) been called “the best resource on differential expression analysis available”.

³http://bioconductor.org/packages/limma
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29. Analysis of 450k DNA methylation
data with minfi

Watch a video¹ of this chapter.

29.1 Dependencies

This document has the following dependencies:

> library(minfi)

> library(GEOquery)

> library(IlluminaHumanMethylation450kmanifest)

> library(IlluminaHumanMethylation450kanno.ilmn12.hg19)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("minfi", "GEOquery"))

29.2 Overview

The Illumina 450k DNA methylation microarray is a cheap and relatively comprehensive array
for assaying DNA methylation. It is the platform of choice for large sample profiling of DNA
methylation, especially for so-called EWAS (Epigenome-wide association studies). The studies are
like GWAS (genome-wide association studies) but instead of associated a phenotype (like disease)
with genotype (typically measured on SNP arrays or exome/whole-genome sequencing) they
associated phenotype with epigenotype.

29.3 DNA methylation

DNA methylation is a chemical modification of DNA. In humans, it occurs at CpG dinucleotides
where the ‘C’ can be methylated or not. The methylation state of a given locus in a single cell is
binary (technically tertiary since we have two copies of most chromosomes) but we measure DNA

¹https://youtu.be/0llfypt9FAM
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methylation across a population of cells. We observe that some loci has intermediate methylation
values (between 0 and 1) and we use the methylation percentage (or Beta-value) to describe this.

The goal of most analyses of DNA methylation is to associate changes in phenotype with changes
in methylation in one or more loci.

29.4 Array Design

The 450k array has a very unusual design, which to some extent impact analysis. It is really a mixture
of a two-color array and two one-color arrays. There are two main types of probes (type I and type
II) and the probe design affects the signal distribution of the probe.

The raw data format for the 450k array is known as IDAT. Because the array is measured in two
different colors, there are two files for each sample, typically with the extention _Grn.idat and
_Red.idat. Illumina’s software suite for analysis of this array is called GenomeStudio. It is not
unusual for practitioners to only have access to processed data from GenomeStudio instead of the
raw IDAT files, but I and others have shown that there is information in the IDAT files which are
beneficial to analysis.

29.5 Data

We will access a dataset created with the intention of studying acute mania. Serum samples were
obtained from individuals hospitalized with acute mania as well as unaffected controls.

We want to obtain the IDAT files which are available as supplementary data. Far from all 450k
datasets on GEO has IDAT files available. First we download the files.

> library(GEOquery)

> getGEOSuppFiles("GSE68777")

> untar("GSE68777/GSE68777_RAW.tar", exdir = "GSE68777/idat")

> head(list.files("GSE68777/idat", pattern = "idat"))

[1] "GSM1681154_5958091019_R03C02_Grn.idat"

[2] "GSM1681154_5958091019_R03C02_Grn.idat.gz"

[3] "GSM1681154_5958091019_R03C02_Red.idat"

[4] "GSM1681154_5958091019_R03C02_Red.idat.gz"

[5] "GSM1681155_5935446005_R05C01_Grn.idat"

[6] "GSM1681155_5935446005_R05C01_Grn.idat.gz"

Currently minfi does not support reading compressed IDAT files. This is clearly a needed func-
tionality and (as the maintainer of this package) I will address this. But for now we will need to
decompress the files.
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> idatFiles <- list.files("GSE68777/idat", pattern = "idat.gz$", full = TRUE)

> head(sapply(idatFiles, gunzip, overwrite = TRUE), n = 3)

GSE68777/idat/GSM1681154_5958091019_R03C02_Grn.idat.gz

8091452

GSE68777/idat/GSM1681154_5958091019_R03C02_Red.idat.gz

8091452

GSE68777/idat/GSM1681155_5935446005_R05C01_Grn.idat.gz

8091452

Now we read the IDAT files using read.450k.exp() which (in this case) reads all the IDAT files in
a directory.

> rgSet <- read.450k.exp("GSE68777/idat")

> rgSet

RGChannelSet (storageMode: lockedEnvironment)

assayData: 622399 features, 40 samples

element names: Green, Red

An object of class 'AnnotatedDataFrame': none

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19

> pData(rgSet)

data frame with 0 columns and 40 rows

> head(sampleNames(rgSet))

[1] "GSM1681154_5958091019_R03C02" "GSM1681155_5935446005_R05C01"

[3] "GSM1681156_5958091020_R01C01" "GSM1681157_5958091020_R03C02"

[5] "GSM1681158_5935403032_R05C01" "GSM1681159_5958091019_R04C02"

Now we have the data, but note that we have no pheno data. And the filenames are very unhelpful
here. These names consists of a GEO identifier (the GSM part) followed by a standard IDAT naming
convention with a 10 digit number which is an array identifier followed by an identifier of the
form R01C01. This is because each array actually allows for the hybridization of 12 samples in a 6x2
arrangement. The 5958091020_R01C0 means row 1 and column 1 on chip 5958091020. This is all
good, but does not help us understand which samples are cases and which are controls.

We now get the standard GEO representation to get the phenotype data stored in GEO. Most of the
columns in this phenotype data are irrelevant (contains data such as the address of the person who
submitted the data); we keep the useful ones. Then we clean it.
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> geoMat <- getGEO("GSE68777")

> pD.all <- pData(geoMat[[1]])

> pD <- pD.all[, c("title", "geo_accession", "characteristics_ch1.1", "character\

istics_ch1.2")]

> head(pD)

title geo_accession characteristics_ch1.1

GSM1681154 5958091019_R03C02 GSM1681154 diagnosis: Mania

GSM1681155 5935446005_R05C01 GSM1681155 diagnosis: Mania

GSM1681156 5958091020_R01C01 GSM1681156 diagnosis: Ctr

GSM1681157 5958091020_R03C02 GSM1681157 diagnosis: Ctr

GSM1681158 5935403032_R05C01 GSM1681158 diagnosis: Mania

GSM1681159 5958091019_R04C02 GSM1681159 diagnosis: Mania

characteristics_ch1.2

GSM1681154 Sex: Female

GSM1681155 Sex: Female

GSM1681156 Sex: Male

GSM1681157 Sex: Female

GSM1681158 Sex: Female

GSM1681159 Sex: Male

> names(pD)[c(3,4)] <- c("group", "sex")

> pD$group <- sub("^diagnosis: ", "", pD$group)

> pD$sex <- sub("^Sex: ", "", pD$sex)

We now need to merge this pheno data into the methylation data. To do so, we need a common
sample identifier and we make sure we re-order the phenotype data in the same order as the
methylation data. Finally we put the phenotype data inside the methylation data.

> sampleNames(rgSet) <- sub(".*_5", "5", sampleNames(rgSet))

> rownames(pD) <- pD$title

> pD <- pD[sampleNames(rgSet),]

> pData(rgSet) <- pD

> rgSet

RGChannelSet (storageMode: lockedEnvironment)

assayData: 622399 features, 40 samples

element names: Green, Red

An object of class 'AnnotatedDataFrame'

sampleNames: 5958091019_R03C02 5935446005_R05C01 ...

5935403032_R04C01 (40 total)

varLabels: title geo_accession group sex

varMetadata: labelDescription

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19
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29.6 Preprocessing

The rgSet object is a class called RGChannelSet which represents two color data with a green and a
red channel, very similar to an ExpressionSet.

The first step is usually to preprocess the data, using a number of functions including

• preprocessRaw() : do nothing.
• preprocessIllumina() : use Illumina’s standard processing choices.
• preprocessQuantile() : use a version of quantile normalization adapted to methylation
arrays.

• preprocessNoob() : use the NOOB background correction method.
• preprocessSWAN() : use the SWAN method.
• preprocessFunnorm() : use functional normalization.

These functions output different types of objects.

The class hierarchy in minfi is as follows: data can be stored in an Methylation and Unmethylation
channel or in a percent methylation (called Beta) channel. For the first case we have the class
MethylSet, for the second case we have the class RatioSet. When you have methylation /
unmethylation values you can still compute Beta values on the fly. You convert from a MethylSet

to a RatioSet with ratioConvert().

In addition to these two classes, we have GenomicMethylSet and GenomicRatioSet. The Genomic

indicates that the data has been associated with genomic coordinates using the mapToGenome()

function.

The starting point for most analyses ought to be a GenomicRatioSet class. If your preprocessing
method of choice does not get you there, use ratioConvert() and mapToGenome() to go the last
steps.

Let us run preprocessQuantile() which arrives at a GenomicRatioSet:

> grSet <- preprocessQuantile(rgSet)

[preprocessQuantile] Mapping to genome.

[preprocessQuantile] Fixing outliers.

[preprocessQuantile] Quantile normalizing.

> grSet

class: GenomicRatioSet

dim: 485512 40

metadata(0):

assays(2): M CN

rownames(485512): cg13869341 cg14008030 ... cg08265308 cg14273923

rowData names(0):
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colnames(40): 5958091019_R03C02 5935446005_R05C01 ...

5958091020_R02C02 5935403032_R04C01

colData names(5): title geo_accession group sex predictedSex

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn12.hg19

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.18.2

Manifest version: 0.4.0

This is like a SummarizedExperiment; we can get the location of the CpGs by

> granges(grSet)

GRanges object with 485512 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

cg13869341 chr1 [15865, 15865] *

cg14008030 chr1 [18827, 18827] *

cg12045430 chr1 [29407, 29407] *

cg20826792 chr1 [29425, 29425] *

cg00381604 chr1 [29435, 29435] *

... ... ... ...

cg17939569 chrY [27009430, 27009430] *

cg13365400 chrY [27210334, 27210334] *

cg21106100 chrY [28555536, 28555536] *

cg08265308 chrY [28555550, 28555550] *

cg14273923 chrY [28555912, 28555912] *

-------

seqinfo: 24 sequences from hg19 genome; no seqlengths

The usual methylation measure is called “Beta” values; equal to percent methylation and defined as
Meth divided by Meth + Unmeth.

> getBeta(grSet)[1:3,1:3]

5958091019_R03C02 5935446005_R05C01 5958091020_R01C01

cg13869341 0.7485333 0.7696497 0.7322275

cg14008030 0.5300410 0.5893653 0.6044354

cg12045430 0.0912596 0.1007678 0.1057603

CpGs forms clusters known as “CpG Islands”. Areas close to CpG Islands are known as CpG Shores,
followed by CpG Shelfs and finally CpG Open Sea probes. An easy way to get at this is to use
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> head(getIslandStatus(grSet))

[1] "OpenSea" "OpenSea" "Island" "Island" "Island" "OpenSea"

29.7 Differential Methylation

Once the data has been normalized, one possibility is to identify differentially methylated CpGs by
using limma on the Beta values.

Another possibility is to look for clusters of CpGs all changing in the same direction. One method
for doing this is through the bumphunter() function which interfaces to the bumphunter package.

29.8 Other Resources

The vignette from the minfi package².

²http://bioconductor.org/packages/minfi

http://bioconductor.org/packages/minfi
http://bioconductor.org/packages/minfi


30. Count Based RNA-seq analysis
Watch a video¹ of this chapter.

30.1 Dependencies

This document has the following dependencies:

> library(DESeq2)

> library(edgeR)

> library(airway)

Use the following commands to install these packages in R.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("DESeq2", "edgeR", "airway"))

30.2 Overview

RNA seq data is often analyzed by creating a count matrix of gene counts per sample. This matrix
is analyzed using count-based models, often built on the negative binomial distribution. Popular
packages for this includes edgeR and DESeq / DESeq2.

This type of analysis discards part of the information in the RNA sequencing reads, but we have a
good understanding of how to analyze this type of data.

30.3 RNA-seq count data

One simple way of analyzing RNA sequencing data is to make it look like microarray data. This is
done by counting how many reads in each sample overlaps a gene. There are many ways to do this.
It obviously depends on the annotation used, but also on how it is decided that a read overlaps a
region. Of specific concern is which genomic regions are part of a gene with multiple transcripts.

There are no consensus on this process and the different choices one make is known to affect the
outcome.

Tools for doing gene counting includes

¹https://youtu.be/zAXHn_Y_NhI
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• by using featureCounts() from the Rsubread package.
• the HTSeq² package (this is a python package, not a Bioconductor package).
• by using summarizeOverlaps() from the GenomicAlignments package.

and there are other alternatives. Many people seem to write their own counting pipeline.

Reducing RNA sequencing data to a single integer per gene is obvious a simplification. Indeed it
ignores some of themain reasons for doing RNA sequencing, including assessing alternative splicing.
On the other hand, we understand the statistical properties of this procedure well, and it delivers a
basic insight into something that most researcher wants to know. Finally, this approach requires the
different genomic regions to be known beforehand.

30.4 Statistical issues

In RNA-seq data analysis we often see that many genes (up to 50%) have little or no expression. It
is common to pre-filter (remove) these genes prior to analysis. In general genomics filtering might
be beneficial to your analysis, but this discussion is outside the scope of this document.

Note: The analysis presented below is extremely superficial. Consider this a very quick introduction
to the workflow of these two packages.

30.5 The Data

We will be using the airway³ dataset which contains RNA-seq data in the form of a SummarizedEx-
periment. Lets load the data and have a look

> library(airway)

> data(airway)

> airway

class: RangedSummarizedExperiment

dim: 64102 8

metadata(1): ''

assays(1): counts

rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

rowData names(0):

colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521

colData names(9): SampleName cell ... Sample BioSample

> assay(airway, "counts")[1:3, 1:3]

SRR1039508 SRR1039509 SRR1039512

²http://www-huber.embl.de/users/anders/HTSeq/
³http://bioconductor.org/packages/airway

http://www-huber.embl.de/users/anders/HTSeq/
http://bioconductor.org/packages/airway
http://www-huber.embl.de/users/anders/HTSeq/
http://bioconductor.org/packages/airway
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ENSG00000000003 679 448 873

ENSG00000000005 0 0 0

ENSG00000000419 467 515 621

> airway$dex

[1] untrt trt untrt trt untrt trt untrt trt

Levels: trt untrt

The main variable of interest is dex which takes on levels trt (treated) and untrt (untreated). The
first level will be the reference level for this factor, so we use relevel() to set the untrt level as
reference; this is much easier to interpret.

> airway$dex <- relevel(airway$dex, "untrt")

> airway$dex

[1] untrt trt untrt trt untrt trt untrt trt

Levels: untrt trt

There is rich information about which gene model was used for each gene:

> granges(airway)

GRangesList object of length 64102:

$ENSG00000000003

GRanges object with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] X [99883667, 99884983] - | 667145 ENSE00001459322

[2] X [99885756, 99885863] - | 667146 ENSE00000868868

[3] X [99887482, 99887565] - | 667147 ENSE00000401072

[4] X [99887538, 99887565] - | 667148 ENSE00001849132

[5] X [99888402, 99888536] - | 667149 ENSE00003554016

... ... ... ... . ... ...

[13] X [99890555, 99890743] - | 667156 ENSE00003512331

[14] X [99891188, 99891686] - | 667158 ENSE00001886883

[15] X [99891605, 99891803] - | 667159 ENSE00001855382

[16] X [99891790, 99892101] - | 667160 ENSE00001863395

[17] X [99894942, 99894988] - | 667161 ENSE00001828996

<64101 more elements>

seqinfo: 722 sequences (1 circular) from an unspecified genome
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30.6 edgeR

The edgeR is very similar in terms of data structures and functionality to the limma. Whereas
limma allows us to operate directy on ExpressionSets, edgeR does not work directly with
SummarizedExperiment. We first need to put out data into an edgeR specific container.

> library(edgeR)

> dge <- DGEList(counts = assay(airway, "counts"),

+ group = airway$dex)

> dge$samples <- merge(dge$samples,

+ as.data.frame(colData(airway)),

+ by = 0)

> dge$genes <- data.frame(name = names(rowRanges(airway)),

+ stringsAsFactors = FALSE)

This object has something called the group which is the basic experimental group for each sample.
It also has $samples (the pheno data) which - weirdly - cannot be set when you create the DGEList
object, so we set it afterwards. The $genes is a data.frame so we cannot include the rich gene model
information we had in the SummarizedExperiment.

Having set up the input object, we now proceed as follows.

First we estimate the normalization factors or effective library sizes

> dge <- calcNormFactors(dge)

Next we setup the design matrix and estimate the dispersion (variance). There are multiple ways to
do this, and the weird two-step procedure is necessary.

> design <- model.matrix(~dge$samples$group)

> dge <- estimateGLMCommonDisp(dge, design)

> dge <- estimateGLMTagwiseDisp(dge, design)

Now we do a glmFit(), similar to limma

> fit <- glmFit(dge, design)

Now it is time to do a test and extract the top hits
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> lrt <- glmLRT(fit, coef = 2)

> topTags(lrt)

Coefficient: dge$samples$grouptrt

name logFC logCPM LR PValue

9658 ENSG00000152583 4.584952 5.536758 286.3965 3.032129e-64

14922 ENSG00000179593 10.100345 1.663884 180.1177 4.568028e-41

3751 ENSG00000109906 7.128577 4.164217 170.6604 5.307950e-39

44236 ENSG00000250978 6.166269 1.405150 168.8572 1.314558e-38

14827 ENSG00000179094 3.167788 5.177666 161.6348 4.971441e-37

17245 ENSG00000189221 3.289112 6.769370 138.9111 4.606056e-32

5054 ENSG00000120129 2.932939 7.310875 137.0461 1.178199e-31

2529 ENSG00000101347 3.842550 9.207551 131.4672 1.956855e-30

2071 ENSG00000096060 3.921841 6.899072 123.3973 1.141438e-28

14737 ENSG00000178695 -2.515219 6.959338 122.9711 1.414932e-28

FDR

9658 1.943655e-59

14922 1.464099e-36

3751 1.134167e-34

44236 2.106644e-34

14827 6.373586e-33

17245 4.920957e-28

5054 1.078927e-27

2529 1.567979e-26

2071 8.129829e-25

14737 9.069997e-25

30.7 DESeq2

Like edgeR, DESeq2 requires us to put the data into a package-specific container (a DESeqDataSet).
But unlike edgeR, it is pretty easy.

> library(DESeq2)

> dds <- DESeqDataSet(airway, design = ~ dex)

Note that the design of the experiment is stored inside the object. The last variable (in case multiple
variables are list) will be the variable of interest which is report in the different results outputs.

Fitting the model is simple

> dds <- DESeq(dds)

and then all we need to do is get the results. Note that the results are not ordered, so we do that.
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> res <- results(dds)

> res <- res[order(res$padj),]

> res[1:10,]

log2 fold change (MAP): dex trt vs untrt

Wald test p-value: dex trt vs untrt

DataFrame with 10 rows and 6 columns

baseMean log2FoldChange lfcSE stat

<numeric> <numeric> <numeric> <numeric>

ENSG00000152583 997.4398 4.280694 0.19572061 21.87145

ENSG00000148175 11193.7188 1.434429 0.08325248 17.22987

ENSG00000179094 776.5967 2.981009 0.18833478 15.82825

ENSG00000109906 385.0710 5.095376 0.32987788 15.44625

ENSG00000134686 2737.9820 1.368175 0.08974798 15.24463

ENSG00000125148 3656.2528 2.126258 0.14207457 14.96579

ENSG00000120129 3409.0294 2.760597 0.18885833 14.61729

ENSG00000189221 2341.7673 3.039185 0.20995474 14.47543

ENSG00000178695 2649.8501 -2.372770 0.16979309 -13.97448

ENSG00000101347 12703.3871 3.406507 0.24761309 13.75738

pvalue padj

<numeric> <numeric>

ENSG00000152583 4.858346e-106 9.020004e-102

ENSG00000148175 1.585139e-66 1.471484e-62

ENSG00000179094 1.986835e-56 1.229586e-52

ENSG00000109906 7.996137e-54 3.711407e-50

ENSG00000134686 1.787492e-52 6.637314e-49

ENSG00000125148 1.228541e-50 3.801516e-47

ENSG00000120129 2.178980e-48 5.779276e-45

ENSG00000189221 1.732453e-47 4.020589e-44

ENSG00000178695 2.231464e-44 4.603262e-41

ENSG00000101347 4.599152e-43 8.538786e-40

and then we print the first 10 hits.

30.8 Comments

We see that amongst the top 5 genes, 3 are shared between edgeR and DESeq2, with some small
variation in the estimated fold-change. The two methods are both being continually developed (and
probably bench-marked against each other by the authors). At any given time it is difficult to decide
which one to prefer.
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30.9 Other Resources

• The vignette from the edgeR webpage⁴.
• The vignette from the DESeq2 webpage⁵.
• The RNA-seq workflow⁶.

⁴http://bioconductor.org/packages/edgeR
⁵http://bioconductor.org/packages/DESeq2
⁶http://bioconductor.org/help/workflows/rnaseqGene/

http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/help/workflows/rnaseqGene/
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/help/workflows/rnaseqGene/


Details on R and Bioconductor
The version of R used and all packages used to produce the output of this book, are detailed in the
following call to sessionInfo():

## R version 3.3.0 (2016-05-03)

## Platform: x86_64-apple-darwin13.4.0 (64-bit)

## Running under: OS X 10.11.5 (El Capitan)

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] stats4 parallel methods stats graphics grDevices utils

## [8] datasets base

##

## other attached packages:

## [1] oligo_1.36.1

## [2] oligoClasses_1.34.0

## [3] leukemiasEset_1.8.0

## [4] hgu95av2.db_3.2.2

## [5] org.Hs.eg.db_3.3.0

## [6] edgeR_3.14.0

## [7] limma_3.28.4

## [8] biomaRt_2.28.0

## [9] airway_0.106.0

## [10] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2

## [11] ShortRead_1.30.0

## [12] GenomicAlignments_1.8.0

## [13] BiocParallel_1.6.2

## [14] Rsamtools_1.24.0

## [15] IlluminaHumanMethylation450kmanifest_0.4.0

## [16] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.2.1

## [17] minfi_1.18.2

## [18] bumphunter_1.12.0

## [19] locfit_1.5-9.1

## [20] iterators_1.0.8

## [21] foreach_1.4.3

## [22] lattice_0.20-33
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## [23] GenomicFeatures_1.24.2

## [24] AnnotationDbi_1.34.2

## [25] GEOquery_2.38.4

## [26] DESeq2_1.12.2

## [27] SummarizedExperiment_1.2.2

## [28] BSgenome.Scerevisiae.UCSC.sacCer2_1.4.0

## [29] BSgenome_1.40.0

## [30] rtracklayer_1.32.0

## [31] Biostrings_2.40.0

## [32] XVector_0.12.0

## [33] GenomicRanges_1.24.0

## [34] GenomeInfoDb_1.8.1

## [35] IRanges_2.6.0

## [36] S4Vectors_0.10.0

## [37] AnnotationHub_2.4.2

## [38] ALL_1.14.0

## [39] Biobase_2.32.0

## [40] BiocGenerics_0.18.0

## [41] BiocStyle_2.0.2

## [42] knitr_1.13

##

## loaded via a namespace (and not attached):

## [1] colorspace_1.2-6 hwriter_1.3.2

## [3] siggenes_1.46.0 mclust_5.2

## [5] base64_2.0 affyio_1.42.0

## [7] interactiveDisplayBase_1.10.3 codetools_0.2-14

## [9] splines_3.3.0 geneplotter_1.50.0

## [11] Formula_1.2-1 annotate_1.50.0

## [13] cluster_2.0.4 shiny_0.13.2

## [15] httr_1.1.0 Matrix_1.2-6

## [17] formatR_1.4 acepack_1.3-3.3

## [19] htmltools_0.3.5 tools_3.3.0

## [21] gtable_0.2.0 affxparser_1.44.0

## [23] doRNG_1.6 Rcpp_0.12.5

## [25] multtest_2.28.0 preprocessCore_1.34.0

## [27] nlme_3.1-127 stringr_1.0.0

## [29] mime_0.4 rngtools_1.2.4

## [31] XML_3.98-1.4 beanplot_1.2

## [33] zlibbioc_1.18.0 MASS_7.3-45

## [35] scales_0.4.0 BiocInstaller_1.22.2

## [37] RColorBrewer_1.1-2 gridExtra_2.2.1

## [39] ggplot2_2.1.0 pkgmaker_0.22
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## [41] rpart_4.1-10 reshape_0.8.5

## [43] latticeExtra_0.6-28 stringi_1.0-1

## [45] RSQLite_1.0.0 genefilter_1.54.2

## [47] chron_2.3-47 matrixStats_0.50.2

## [49] bitops_1.0-6 nor1mix_1.2-1

## [51] evaluate_0.9 bit_1.1-12

## [53] plyr_1.8.3 magrittr_1.5

## [55] R6_2.1.2 Hmisc_3.17-4

## [57] DBI_0.4-1 foreign_0.8-66

## [59] survival_2.39-2 RCurl_1.95-4.8

## [61] nnet_7.3-12 grid_3.3.0

## [63] data.table_1.9.6 digest_0.6.9

## [65] xtable_1.8-2 ff_2.2-13

## [67] httpuv_1.3.3 illuminaio_0.14.0

## [69] openssl_0.9.3 munsell_0.4.3

## [71] registry_0.3 quadprog_1.5-5
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