Analysis of Single Cell RNA-Seq Data:
Batch Effects and Data Integration
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Batch Effects Outline

e Sources of batch effects

e Computational approaches to correct for batch effects and
integrate data

* Assessing batch effect corrections and the assumptions of
these methods



Distinguishing biological effects and technical, batch effects is
a difficult problem

30 -
20 -
o 10- Cells are colored by cell
Ll
C% 0- type.
= —10- Symbols represent
—20 - different batches.
~130 -

-30 =20 10 0 10 20 30
t-SNE 1
Correcting for batch effects allows us to
combine datasets and boost biological signal,
while reducing technical confounders



The most powerful way to control batch effects is with careful
experimental design
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Sound experimental design : Replication, Randomization and Blocking
- R. A. Fisher, 1935

https://scrnaseg-course.cog.sanger.ac.uk/website/ideal-scrnaseg-pipeline-as-of-oct-2017.html



Batch effects: technical sources

e Differences in how samples are

Miseq

sequenced
* sequencing depth and saturation

® sequencing instrument

Nextseq

~ 500M reads total

HiSeq 4000

4 billion reads



Batch effects: technical sources
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Chen X. et al. (2018) Annual Review of Biomedical Data Science Vol. 1:29-51



A few basic approaches to batch correction

* Down sampling of sequencing reads
* Normalization
* Using variable genes common to multiple samples
® Removing genes correlated with batch
® Regression of residuals with technical covariates
* batch id
e number of UMI per cell

* number of genes per cell
* % mitochondrial reads

* ComBat (developed for microarray experiments)



Batch correction and data modality integration

Batch effects often arise when patient
samples are analyzed together
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Batch correction and data modality integration

e Seuratv3

* LIGER (Linked Inference ot Genomic Experimental Relationships)

» Conos (Clustering on Network of Samples)



Canonical Correlation Analysis (CCA)

e CCA finds the linear combinations of variables across two datasets that are

maximally correlated with one another.

*  The first pair of canonical variables maximizes the correlation across datasets.

*  The second pair of canonical variables maximizes the correlation subject to the

constraint of not being correlated with the first pair, and so on.

e QGoals of CCA

Similar to Principle Components
Analysis (PCA)

Dimensional reduction: explain
covariation between datasets with a
small number of linear combinations of

variables
https://www.mathworks.com
httos://aithub.com/mhaahiaghat/ccaFuse



Canonical Correlation Analysis (CCA)
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“Effectively, we treat the data sets as multiple
measurements of a gene—gene covariance structure, and
search for patterns that are common to the data sets.”
Butler, A, et al. Nature Biotechnology 36.5 (2018): 411.
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Canonical Correlation Analysis (CCA)

Unaligned datasets

® MARS @S82
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Aligned datasets
® MARS @S82

Assessing the
performance of
batch correction

“For every cell, we
calculate how many of its
k nearest-neighbors
belong to the same data
set and average this over
all cells. If the data sets
are well-aligned, we
would expect that each
cells’ nearest neighbors
would be evenly shared
across all data sets.”

Butler, A, et al. Nature Biotechnology 36.5 (2018): 411.



Mutual Nearest Neighbors

"I a pair of cells from each batch is
contained in each other’s set of nearest
neighbors, those cells are considered
to be mutual nearest neighbors. We
interpret these pairs as containing cells
that belong to the same cell type or
state despite being generated in
different batches. Thus, any systematic
differences in expression level
between cells in MNN pairs should
represent the batch effect.”

Haghverdi, L, et al. Nature biotechnology 36.5 (2018): 421.
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Mutual Nearest Neighbors
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Haghverdi, L, et al. Nature biotechnology 36.5 (2018): 421.
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Combining CCA and Mutual Nearest Neighbors (Seurat v3)
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Stuart et al. Cell (2019) 177(7):1888-1902.
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Combining CCA and Mutual Nearest Neighbors (Seurat v3)

Human and mouse pancreas datasets

Unaligned datasets
® Human @ Mouse
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Aligned datasets
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Stuart et al. Cell (2019) 177(7):1888-1902.



Classifying nuclei from a single cell ATAC-seq experiment
using single cell RNA-seq data as a reference

Integrating data modalities
14,249 cells from scRNA-seq and 2,548 cells from scATAC-seq
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Stuart et al. Cell (2019) 177(7):1888-1902.



Batch correction and data modality integration using LIGER
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Welch, et al. Cell (2019) 177(7): 1873-1887.



Batch correction and data modality integration using LIGER

b

LIGER implements
non-negative
matrix factorization
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Integrative nonnegative matrix factorization
with dataset-specific factors

Joint clustering using
shared factor neighborhood graph
Welch, et al. Cell (2019) 177(7): 1873-1887.



Integrating blood cell datasets using LIGER

Higher alignment score =
better data integration
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Welch, et al. Cell (2019) 177(7): 1873-1887.



Integrating blood cell datasets using LIGER
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Ideally, divergent cell types should not cluster
together after batch correction.

Welch, et al. Cell (2019) 177(7): 1873-1887.



In situ spatial transcriptomic data in mouse frontal cortex
STARmap

Intact tissue Targeted in situ RNA sequencing approach
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Wang, Xiao, et al. Science (2018): eaat5691.



Using LIGER to integrate single-cell transcriptomic and

in situ spatial transcriptomic data
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What are advantages ot integrated analysis of these 2 datasets?

Welch, et al. Cell (2019) 177(7): 1873-1887.



Using LIGER to integrate single-cell transcriptomic and
single-cell DNA methylation data

56,000 cells from scRNA-seq
3,000 cells from DNA methylation

"We reasoned that, because gene body
methylation is generally anticorrelated
with gene expression, reversing the
direction of the methylation signal would

allow joint analysis.”
Welch, et al. Cell (2019) 177(7): 1873-1887.



Methods to assess performance of batch correction

* Entropy of batch mixing

e kBET - k-nearest neighbor batch effect test

c d
Well normalised data Badly normalised data
14 1%
2 W sod's @ 29 10s
o, L ¢ 00
% o.@: 3 3V @.z. 3%
W ED M V& €0 Ll
[ S | | h O u ette CO efﬂ C| e n t god?stribution distribution

e cells of the same cell type are close together and far from other
cells of a different type

e Adjusted rand index

® do batch labels and cluster labels agree with one another?

e Biological significance



Common assumptions during batch correction

* At least one cell population is found shared in both
datasets

* The batch effect and the biological differences do not
overlap with one another (ie orthogonal)

* The magnitude and variation of the biological effect
you care about is greater than that of the batch effect



