ChlIP-seqg analysis

Epigenomics Data Analysis
Jacques Serizay
Physalia 2025




Chromatin immunoprecipitation: an old tool rejuvenated by high-throughput sequencing

Chromatin IP is not a new approach. It has been around for the past three decades

o Summary
We have used formaldehyde-mediated proteinDNA crosslinking within intact cells to examine the

in vivo chromatin structure of the D. melanogaster heat shock protein 70 ( hsp70) genes. In
agreement with previous in vitro studies, we find that the heat shockmediated transcriptional
induction of the hsp70 genes perturbs their chromatin structure, resulting in fewer proteinDNA
contacts crosslinkable in vivo by formaldehyde. However, contrary to earlier in vitro evidence
that histones may be absent from actively transcribed genes, we show directly, by
immunoprecipitation of in vivocrosslinked chromatin fragments, that at least histone H4 remains
bound to hsp70 DNA in vivo, irrespective of its rate of transcription. The formaldehyde-based in
vivo mapping techniques described in this work are generally applicable, and can be used both
to probe proteinDNA interactions within specific genes and to determine the genomic location of
specific chromosomal proteins.
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Chromatin immunoprecipitation: an old tool rejuvenated by high-throughput sequencing

It gained a lot of traction when high-throughput sequencing emerged
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Introduction to ChlP-seq



Current ChIP-seq approaches

ChlP-seq

Low input ChlIP-seq

Native ChlP-seq

Indirect ChlP-seq with DamlID

ChlIP-seq with chemical-based fragmentation
Cut&Run, Cut&Tag

Single-cell ChlP-seq




Direct approaches

Zentner & Henikoff, Nat. Rev. Genet. 2014

Current ChIP-seq approaches
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Current ChIP-seq approaches
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ChIP-seq downstream analysis

& Get .bel files =
@ Create fastq files @ Or bcl2fastq

(J) CIGREIN N GINRGVETEIIWAEEE E g. cutadapt

@ Align fastq to BAM E.g. bowtie2
@ Filter duplicates, artifacts, ... E.g. samtools

Peak calling

Differential peak analysis
Motif finding

Peak co-occurrence analysis

‘ Assay-specific downstream analysis
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ChiIP-seq outputs

Genome-wide coverage tracks
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o Can be directly viewed in a genome browser
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Park et al., Nat. Rev. Genet. 2009
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ChiIP-seq outputs

Genome-wide coverage tracks

o Can be directly viewed in a genome browser

o Can also be aligned at genomic features of interest (e.g. TSSs)
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ChiIP-seq outputs

Genome-wide coverage tracks

o Can be directly viewed in a genome browser
o Can also be aligned at genomic features of interest (e.g. TSSs)

Peak sets
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Subramanian et al., PLoS Genetics 2013
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ChiIP-seq outputs

Genome-wide coverage tracks

o Can be directly viewed in a genome browser

o Can also be aligned at genomic features of interest (e.g. TSSs)
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What are “peaks”?

ChlP-seq libraries show uneven genomic coverage: loci with high local coverage compared to
neighboring environment are “peaks”.
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Inherent ChIP-seq artefacts

Potential sources of artefacts in ChlP-seq experiments are:
o DNA shearing: not uniform across genome, which results in more reads in open chromatin regions.
o Amplification bias (GC content)
o Repetitive regions might appear enriched due to underestimated repeat copies in the reference genome

o Sequencing depth may be too low, resulting in noisy peaks

This impedes straightforward identification of peaks in ChlP-seq data




Dealing with ChIP-seq artefacts: using an “input” sample

Input control: DNA is isolated from cells that have been cross-linked and fragmented under the same
conditions as the immunoprecipitated DNA
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Finding peaks in ChiP-seq (1)

General workflow relies on comparing
local read coverage to the input

Park, Nat. Rev. Genetics 2009
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Finding peaks in ChiP-seq (2)

MACS?2 finds a model estimating how to

shift sense and antisense reads /W
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Finding peaks in ChiP-seq (3)

Then MACS2 scans the genome again using a
window size which is twice the fragment length.

For each peak, MACS2 calculates a p-value

using a dynamic Poisson distribution to capture
local biases in read background levels.

If a control sample is available, it is used to
calculate the local background.
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Finding peaks in ChiP-seq (3)

Then MACS2 scans the genome again using a window size which is twice the fragment length.

For each peak, MACS2 calculates a p-value using a dynamic Poisson distribution to capture local biases
in read background levels.




Finding peaks in ChiP-seq (3)

Then MACS2 scans the genome again using a window size which is twice the fragment length.

For each peak, MACS2 calculates a p-value using a dynamic Poisson distribution to capture local biases
in read background levels.

If a control sample is available, it is used to calculate the local background.

macs2 callpeak ——treatment ...bam --control ...bam




Using replicates to peaks

The easiest approach it to take overlapping peak calls across replicates.

Combined
peaks
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Using replicates to peaks

The easiest approach it to take overlapping peak calls across replicates.

For more advanced users, there are more complex methods that employ statistical testing and evaluate
the reproducibility between replicates.

The standard approach to leverage replicates is the IDR (Irreproducibility Discovery Rate) approach.

Qi et al., The Annals of Applied Statistics 2011
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Using replicates to peaks

The easiest approach it to take overlapping peak calls across replicates.

For more advanced users, there are more complex methods that employ statistical testing and evaluate
the reproducibility between replicates.

The standard approach to leverage replicates is the IDR (Irreproducibility Discovery Rate) approach.

idr ——samples repl.narrowPeak rep2.narrowPeak \
—input-file-type narrowPeak \
——rank p.value \
—output-file idr \
—plot \
—log—output—-file idr. log




