Improving package: Support for (raw) data, vignettes

Physalia course 2023

Instructor: Jacques Serizay

Standard package content


```
myPackage/
R/
functions.R
utils.R
man/
myfunction.Rd
tests/
testthat.R
testthat/
test-myfun.R
DESCRIPTION
README.md
NAMESPACE
NEWS
LICENSE
```

Standard package content

```
myPackage/
R/
functions.R
utils.R
man/
myfunction.Rd
tests/
testthat.R
testthat/
test-myfun.R
DESCRIPTION
README.md
NAMESPACE
NEWS
LICENSE
```



```
myPackage/
   R/
     functions.R
     utils.R
   man/
     myfunction.Rd
   tests/
      testthat.R
      testthat/
        test-myfun.R
   inst/
     extdata/
        <raw-data-file>
   data/
     <data>.Rda
   vignettes/
     myPackage.Rmd
   DESCRIPTION
   NAMESPACE
   README.md
  NEWS
   LICENSE
```

Why providing data in your package?

Data shipped with your package are meant to:

- 1. Provide a means to run examples and demonstrate package functionalities in vignettes;
- 2. Directly enable analysis (in "data" packages)

Adding data to package

```
2 types of "data":
```

- Raw: e.g. genomic files (bed, bigwig, bam, ...) or other (tables, text files, ...)
- Processed: `.Rda `files, containing R objects to be loaded in memory in R.

Package size limits

Watch out! Your package should be < 5Mb. Genomic files (particularly) can expand in size very quickly. Be cautious!

Package size limits

Watch out! Your package should be < 5Mb. Genomic files (particularly) can expand in size very quickly. Be cautious!

This is a rather strict requirement for Bioconductor. Under only very few specific circumstances will the BioC core members allow you to exceed this (e.g. developing specific packages coordinated by the BioC team itself).

Package size limits

Watch out! Your package should be < 5Mb. Genomic files (particularly) can expand in size very quickly. Be cautious!

This is a rather strict requirement for Bioconductor. Under only very few specific circumstances will the BioC core members allow you to exceed this (e.g. developing specific packages coordinated by the BioC team itself).

<u>Unrelated but still worth mentioning:</u>

Don't forget, git never forgets! If you add a dataset and commit/push it to your git repo, it will stay there forever. Even after deleting it, it will still be in your `. git ` local folder and in git memory (because you should be able to recover it back, since everything is reversible in git). This usually results in enormous `. git ` folders... Watch out for storage space!

Raw data can be virtually any file, but it has to be relevant for the package development.

The main reason to include such files is when a key part of a package's functionality is to act on an external file (e.g. `readr`, `vroom`, ...).

Raw data is stored in `inst/extdata`.

```
myPackage/
      functions.R
     utils.R
   man/
     myfunction.Rd
   tests/
      testthat.R
      testthat/
        test-mvfun.R
   inst/
      extdata/
         <raw-data-file>
   DESCRIPTION
   NAMESPACE
   README.md
   NEWS
   LICENSE
```

Raw data can be virtually any file, but it has to be relevant for the package development.

The main reason to include such files is when a key part of a package's functionality is to act on an external file (e.g. `readr`, `vroom`, ...).

Raw data is stored in `inst/extdata`.

It is good practice to document how raw data files were generated.

You can do it by adding a `data-raw` folder to the root of your package and add R files describing how

the data was created.

It is good practice to document how raw data files were generated.

You can do it by adding a `data-raw` folder to the root of your package and add R files describing how the data was created.

Of note, Bioconductor specifically prefers these files to be located in `inst/scripts/`:

https://contributions.bioconductor.org/docs.html#doc-inst-script.

Raw data should generally not be read by the end-user.

Instead, it is a way for the package writer to describe how to import files.

Raw data should generally not be read by the end-user.

Instead, it is a way for the package writer to describe how to import files.

For this reason, raw data is generally only a <u>toy dataset</u>, a <u>small subset</u> of an actual dataset (*e.g.* only a single chromosome out of a whole genome, etc.)

Raw data should generally not be read by the end-user.

Instead, it is a way for the package writer to describe how to import files.

For this reason, raw data is generally only a <u>toy dataset</u>, a <u>small subset</u> of an actual dataset (*e.g.* only a single chromosome out of a whole genome, etc.).

For this reason as well, if your package deals with already existing file formats (e.g. bed, bam, bigwig, ...), many BioC core packages (e.g. GenomicRanges, rtracklayer, Biostrings, ...) <u>already provide toy</u> <u>datasets!!</u>

Hosting all these raw data files has a cost (economical and <u>environmental</u>). Please, do check whether core packages can provide the type of files you'd need as a toy dataset.

The package writer can have access to their (or other packages') raw data files using `system.file()`:

```
## List raw data files shipped with GenomicRanges
> system.file('extdata', package = 'GenomicRanges') |> list.files()
[1] "feature_frags.txt"

## Get full path to "feature_frags.txt"
> system.file('extdata', "feature_frags.txt", package = 'GenomicRanges')
[1] "/Users/jacques/Library/R/arm64/4.3/library/GenomicRanges/extdata/feature_frags.txt"
```

The package writer can have access to their (or other packages') raw data files using `system.file()`:

```
GRangesList-class: GRangesList objects
In Bioconductor/GenomicRanges: Representation and manipulation of genomic intervals
Examples
 ## Construction with GRangesList():
 gr1 <- GRanges("chr2", IRanges(3, 6),
                strand="+", score=5L, GC=0.45)
 gr2 <- GRanges(c("chr1", "chr1"), IRanges(c(7,13), width=3),
                strand=c("+", "-"), score=3:4, GC=c(0.3, 0.5))
 gr3 \leftarrow GRanges(c("chr1", "chr2"), IRanges(c(1, 4), c(3, 9)),
               strand=c("-", "-"), score=c(6L, 2L), GC=c(0.4, 0.1))
 grl <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)
 ## Summarizing elements:
 elementNROWS(grl)
 table(segnames(grl))
 ## Extracting subsets:
 grl[segnames(grl) == "chr1", ]
 grl[seqnames(grl) == "chr1" & strand(grl) == "+", ]
 ## Renaming the underlying sequences:
 seqlevels(grl)
 seqlevels(grl) <- sub("chr", "Chrom", seqlevels(grl))
```

Processed data are stored in the `data/` folder.

```
myPackage/
     functions.R
     utils.R
   man/
     myfunction.Rd
   tests/
     testthat.R
     testthat/
        test-myfun.R
   inst/
     extdata/
        <raw-data-file>
   data/
     mydata.rda
   DESCRIPTION
   NAMESPACE
   README.md
   NEWS
   LICENSE
```

Processed data are stored in the `data/` folder.

Processed data are stored in the `data/` folder.

The best way to provide processed data in your package is through `usethis::use_data()`.

```
> chr <- vroom::vroom('HiCompute/testHiC.chr.tsv')</pre>
> chr
# A tibble: 17 \times 4
   contig length n_frags cumul_length
   <chr>
            <dbl>
                     <dbl>
                                   <dbl>
           230218
                      1358
                                        0
 2 II
                      4981
           813184
                                    1358
 3 III
           316620
                      1948
                                    6339
 4 IV
          1531933
                      9709
                                    8287
 5 V
           576874
                      3484
                                   17996
 6 VI
                      1734
           270161
                                   21480
          1090940
                      6716
 7 VII
                                   23214
 8 VIII
           562643
                      3405
                                   29930
 9 IX
           439888
                      2756
                                   33335
10 X
           745751
                      4679
                                   36091
                      4144
11 XI
           666816
                                   40770
                      6728
12 XII
          1078177
                                   44914
13 XIII
           924431
                      5713
                                   51642
14 XIV
           784333
                      4847
                                   57355
          1091291
15 XV
                      6731
                                   62202
16 XVI
           948066
                      5814
                                   68933
17 Mito
            85779
                       160
                                   74747
> usethis::use data(chr)
v Saving 'chr' to 'data/chr.rda'
* Document your data (see 'https://r-pkgs.org/data.html')
```

Processed data are stored in the `data/` folder.

The best way to provide processed data in your package is through `usethis::use_data()`.

Avoid at all costs creating the `data/` folder yourself. You should be able to use `usethis::use_data()` instead.

```
> chr <- vroom::vroom('HiCompute/testHiC.chr.tsv')</pre>
> chr
# A tibble: 17 x 4
   contig length n_frags cumul_length
   <chr>
            <dbl>
                     <dbl>
                                   <dbl>
            230218
                      1358
                                        0
            813184
                      4981
                                    1358
                      1948
                                    6339
            316620
 4 IV
          1531933
                      9709
                                    8287
 5 V
            576874
                      3484
                                   17996
                      1734
 6 VI
           270161
                                   21480
                      6716
 7 VTT
           1090940
                                   23214
 8 VIII
           562643
                      3405
                                   29930
 9 IX
           439888
                      2756
                                   33335
10 X
           745751
                      4679
                                   36091
11 XI
            666816
                      4144
                                   40770
12 XII
           1078177
                      6728
                                   44914
13 XIII
           924431
                      5713
                                   51642
           784333
14 XIV
                      4847
                                   57355
15 XV
           1091291
                      6731
                                   62202
16 XVI
            948066
                       5814
                                   68933
17 Mito
            85779
                       160
                                   74747
> usethis::use data(chr)
v Saving 'chr' to 'data/chr.rda'
* Document your data (see 'https://r-pkgs.org/data.html')
```

Like anything else in your package, your data should be documented.

The recommended way is to do that in a `R/data.R` file

Like anything else in your package, your data should be documented.

The recommended way is to do that in a `R/data.R` file

Processed data are made readily available to your package end-users through the `data()` function.

```
> library(babynames)
> data(babynames)
> babynames
# A tibble: 1,924,665 × 5
   year sex name
                               prop
   <dbl> <chr> <chr>
                    <int> <dbl>
              Mary 7065 0.0724
Anna 2604 0.0267
   1880 F
   1880 F
              Anna
   1880 F
              Emma
                         2003 0.0205
   1880 F
              Elizabeth 1939 0.0199
   1880 F
              Minnie
                         1746 0.0179
              Margaret
   1880 F
                        1578 0.0162
    1880 F
              Ida
                        1472 0.0151
              Alice
                        1414 0.0145
   1880 F
              Bertha
                        1320 0.0135
   1880 F
              Sarah
                        1288 0.0132
# ... with 1,924,655 more rows
# i Use `print(n = ...)` to see more rows
```

Processed data are made readily available to your package end-users through the `data()` function.

```
> data(lifetables)
> lifetables
# A tibble: 2,880 × 9
              qх
                     lχ
                            dx
                                  Lx
                                          Τx
                                                 ex sex
                                                           year
           <dbl>
                  <dbl> <dbl> <dbl>
   <dbl>
                                       <dbl> <dbl> <fct> <dbl>
       0 0.146
                 100000 14596 90026 5151511
                                                           1900
       1 0.0328
                  85404
                          2803 84003 5061484
                                              59.3 M
                                                           1900
       2 0.0163
                  82601
                          1350 81926 4977482
                                              60.3 M
                                                           1900
       3 0.0105
                  81251
                           855 80824 4895556
                                              60.2 M
                                                           1900
       4 0.00875
                  80397
                           703 80045 4814732
                                              59.9 M
                                                           1900
       5 0.00628
                           501 79443 4734687
                  79693
                                              59.4 M
                                                           1900
       6 0.00462
                  79193
                           366 79010 4655244
                                              58.8 M
                                                           1900
       7 0.00326
                  78827
                           257 78698 4576234
                                                           1900
                                              58.0 M
       8 0.00256
                  78569
                           201 78469 4497536
                                              57.2 M
                                                           1900
       9 0.00203
                 78368
                           159 78288 4419068
                                              56.4 M
                                                           1900
# ... with 2,870 more rows
# i Use `print(n = ...)` to see more rows
```

Vignettes are extensive (comprehensive) walkthrough of your package functionalities.

Vignettes are extensive (comprehensive) walkthrough of your package functionalities.

They live in the `vignettes/` folder (duh \bigcirc).

```
myPackage/
      functions.R
     utils.R
   man/
     myfunction.Rd
   tests/
      testthat.R
     testthat/
        test-myfun.R
   inst/
     extdata/
        <raw-data-file>
   data/
     <data>.Rda
   vignettes/
     myPackage.Rmd
   DESCRIPTION
   NAMESPACE
   README.md
   NEWS
   LICENSE
```

Vignettes are extensive (comprehensive) walkthrough of your package functionalities.

They live in the `vignettes/` folder (duh \circ).

You can create a vignette boilerplate with either:

- o usethis::use_vignette('<YOUR-PACKAGE>')
- o biocthis::use_bioc_vignette('<YOUR-PACKAGE>')

Vignettes are extensive (comprehensive) walkthrough of your package functionalities.

They live in the `vignettes/` folder (duh $\stackrel{\smile}{\circ}$) .

You can create a vignette boilerplate with either:

- o usethis::use_vignette('<YOUR-PACKAGE>')
- o biocthis::use_bioc_vignette('<YOUR-PACKAGE>')

You are not limited to a single vignette. However, you <u>must</u> provide at least one, which should be named <YOUR-PACKAGE>.Rmd.

Vignettes are extensive (comprehensive) walkthrough of your package functionalities.

They live in the `vignettes/` folder (duh $\stackrel{\smile}{\circ}$) .

You can create a vignette boilerplate with either:

- o usethis::use_vignette('<YOUR-PACKAGE>')
- o biocthis::use_bioc_vignette('<YOUR-PACKAGE>')

You are not limited to a single vignette. However, you <u>must</u> provide at least one, which should be named <YOUR-PACKAGE>.Rmd.

Be as thorough as possible to describe all your package functionalities.

Once your package is accepted by BioC, your vignette will be compiled by the Bioconductor Single Package Builder into an HTML page, accessible through your package webpage.


```
vignettes > • HiContacts.Rmd > abc unnamed-chunk-1
      title: "Introduction to HiContacts"
      author: "Jacques Serizay"
      date: "`r Sys.Date()`"
      output:
           BiocStyle::html_document
           %\VignetteIndexEntry{Introduction to HiContacts}
           %\VignetteEngine{knitr::rmarkdown}
           %\VignetteEncoding{UTF-8}
  10
  11
  12
       Select Chunk | Run Chunk
 13 \rightarrow ```{r, eval = TRUE, echo=FALSE, results="hide", warning=FALSE}
  14 v knitr::opts_chunk$set(
          collapse = TRUE,
  15
         comment = "#>",
  16
         crop = NULL
  17
  18
  19 ∨ suppressPackageStartupMessages({
  20
           library(ggplot2)
           library(dplyr)
           library(GenomicRanges)
 22
 23
           library(HiContactsData)
           library(HiContacts)
  24
  25
```


Jacques Serizay

4.2 Cis-trans ratios

4.3 P(s) 5 Session info

2022-11-01

Contents

```
1 Getting started
      1.1 The Contacts class
      1.2 Basics: importing .(m)/cool files as Contacts objects
      1.3 Slots
      1.4 Slot setters
             1.4.1 Scores
            1.4.2 Features
      1.5 Coercing Contacts
2 Plotting matrices
      2.1 Plot matrix heatmaps
      2.2 Plot loops
      2.3 Plot borders
3 Arithmetics
      3.1 Subsetting a contact map
      3.2 Computing autocorrelated contact map
      3.3 Detrending contact map (map over expected)
      3.4 Summing two maps
      3.5 Computing ratio between two maps
4 Contact map analysis
      4.1 Virtual 4C
```

```
 HiContacts.Rmd ×
vignettes > • HiContacts.Rmd > abc unnamed-chunk-1
 28 \sim \# Getting started
  29
  30 \( \square\) ## The `Contacts` class
  31
       `HiContacts` package implements the new `Contacts` S4 class. It is build
       on pre-existing Bioconductor classes, namely `InteractionSet`,
       `GenomicInterations` and `ContactMatrix`
       (`Lun, Perry & Ing-Simmons, F1000Research 2016`), and leverages them to
       import locally stored `.(m)cool` files. It further provides **analytical**
       and **visualization** tools to investigate contact maps directly in `R`.
  38
       Select Chunk | Run Chunk
  39 \vee ``` \{r\}
       showClass("Contacts")
       contacts <- contacts_yeast()</pre>
       contacts
  43
  44
       Select Chunk | Run Chunk
  45 \vee ``` \{r\}
       citation('HiContacts')
```


Getting started

1.1 The Contacts class

HiContacts package implements the new Contacts S4 class. It is build on pre-existing Bioconductor classes, namely InteractionSet, GenomicInterations and ContactMatrix (Lun, Perry & Ing-Simmons, F1000Research 2016), and leverages them to import locally stored .(m)cool files. It further provides analytical and visualization tools to investigate contact maps directly in R.

```
showClass("Contacts")
#> Class "Contacts" [package "HiContacts"]
#> Slots:
#> Name:
                   fileName
                                         focus
                                                        resolutions
#> Class:
                   character
                                characterOrNULL
#> Name:
                  resolution
                                   interactions
                                                            scores
#> Class:
                    numeric
                                  GInteractions
                                                         SimpleList
#> Name: topologicalFeatures
                                      pairsFile
                                                           metadata
                  SimpleList characterOrNULL
#> Extends: "Annotated"
contacts <- contacts_yeast()
#> snapshotDate(): 2022-10-24
#> see ?HiContactsData and browseVignettes('HiContactsData') for documentation
#> loading from cache
#> `Contacts` object with 74,360 interactions over 802 regions
#> fileName: "/home/biocbuild/.cache/R/ExperimentHub/37cabfdcee0b5_7752"
#> focus: "II"
#> resolutions(5): 1000 2000 4000 8000 16000
#> current resolution: 1000
#> interactions: 74360
#> scores(2): raw balanced
#> topologicalFeatures: loops(0) borders(0) compartments(0) viewpoints(0)
#> pairsFile: N/A
#> metadata(0):
citation('HiContacts')
```

```
#> To cite package 'HiContacts' in publications use:
#> Serizay J (2022). _HiContacts: HiContacts: R interface to cool
#> files_. R package version 1.0.0,
#> <https://github.com/js2264/HiContacts>.
#> A BibTeX entry for LaTeX users is
    title = {HiContacts: HiContacts: R interface to cool files},
     author = {Jacques Serizay},
     year = \{2022\},
     note = {R package version 1.0.0},
#> url = {https://github.com/js2264/HiContacts},
#> }
```

This means <u>all the code</u> in a vignette <u>must</u> work!

Standard package content

```
myPackage/
R/
functions.R
utils.R
man/
myfunction.Rd
tests/
testthat.R
testthat/
test-myfun.R
DESCRIPTION
README.md
NAMESPACE
NEWS
LICENSE
```



```
myPackage/
   R/
     functions.R
     utils.R
   man/
     myfunction.Rd
   tests/
     testthat.R
     testthat/
        test-myfun.R
   inst/
     extdata/
        <raw-data-file>
   data/
     <data>.Rda
   vignettes/
     myPackage.Rmd
   DESCRIPTION
   NAMESPACE
   README.md
   NEWS
   LICENSE
```