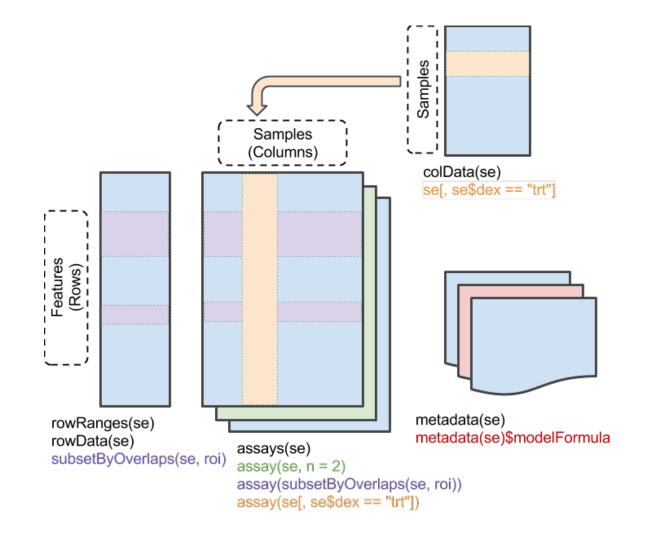
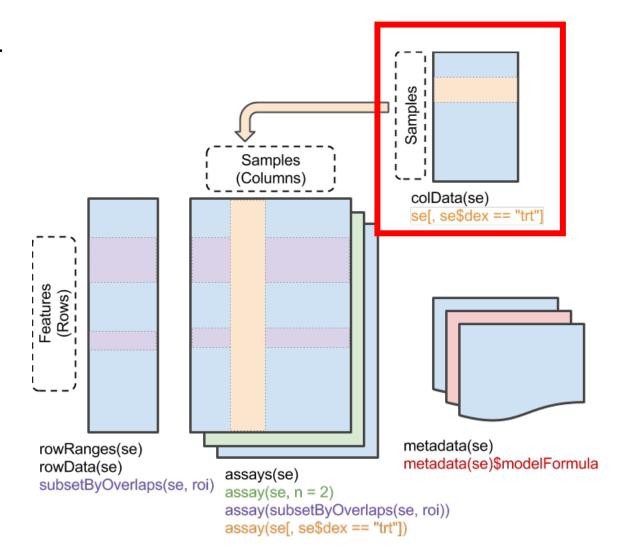
R/Bioconductor 201

Physalia course 2023

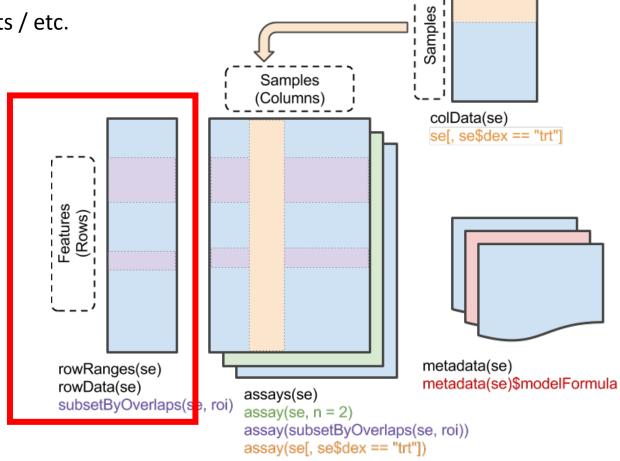

Instructor: Jacques Serizay

Published: 29 January 2015

Orchestrating high-throughput genomic analysis with Bioconductor


Wolfgang Huber ☑, Vincent J Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton S Carvalho, Hector Corrada Bravo, Sean Davis, Laurent Gatto, Thomas Girke, Raphael Gottardo, Florian Hahne, Kasper D Hansen, Rafael A Irizarry, Michael Lawrence, Michael I Love, James MacDonald, Valerie Obenchain, Andrzej K Oleś, Hervé Pagès, Alejandro Reyes, Paul Shannon, Gordon K Smyth, Dan Tenenbaum, Levi Waldron & Martin Morgan -Show fewer authors

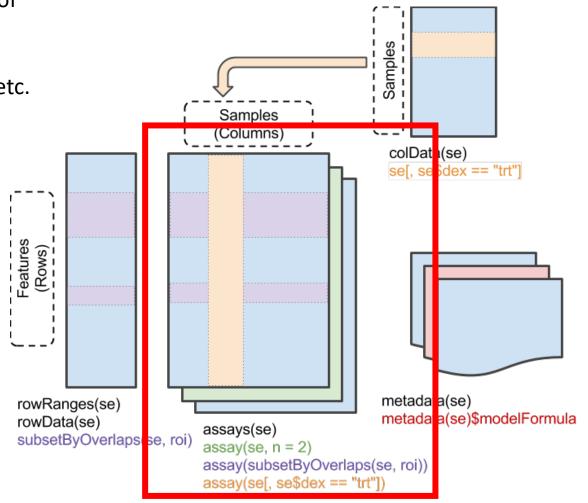
Nature Methods 12, 115–121(2015) | Cite this article


• colData(): Annotations on each column, as a DataFrame.

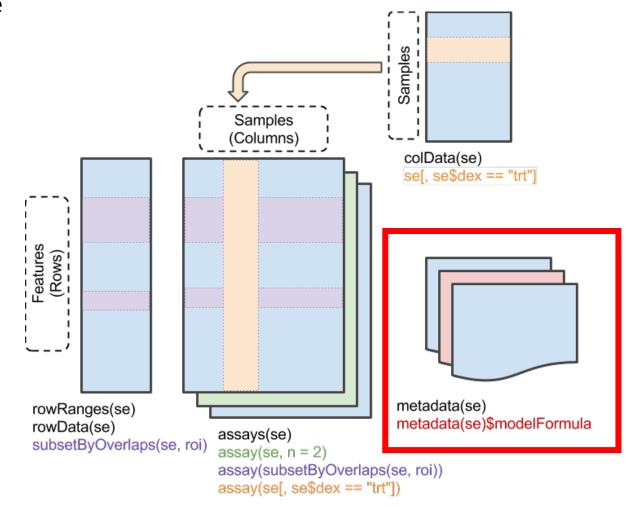
E.g., description of each sample

rowData/rowRanges(): Annotations on each row.

E.g., coordinates of gene / exons /peaks in transcripts / etc.

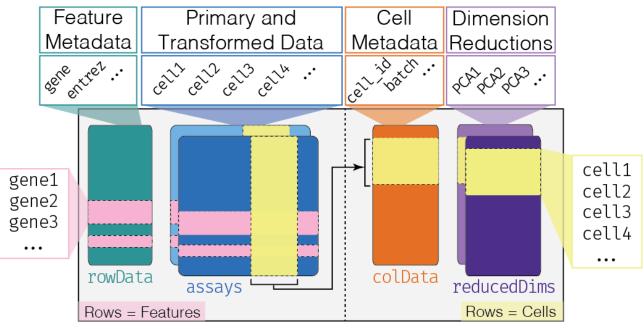

 assay(), assays(): A matrix-like or list of matrix-like objects of identical dimension

rows: refer to **rowRanges**: genes, genomic coordinates, etc.

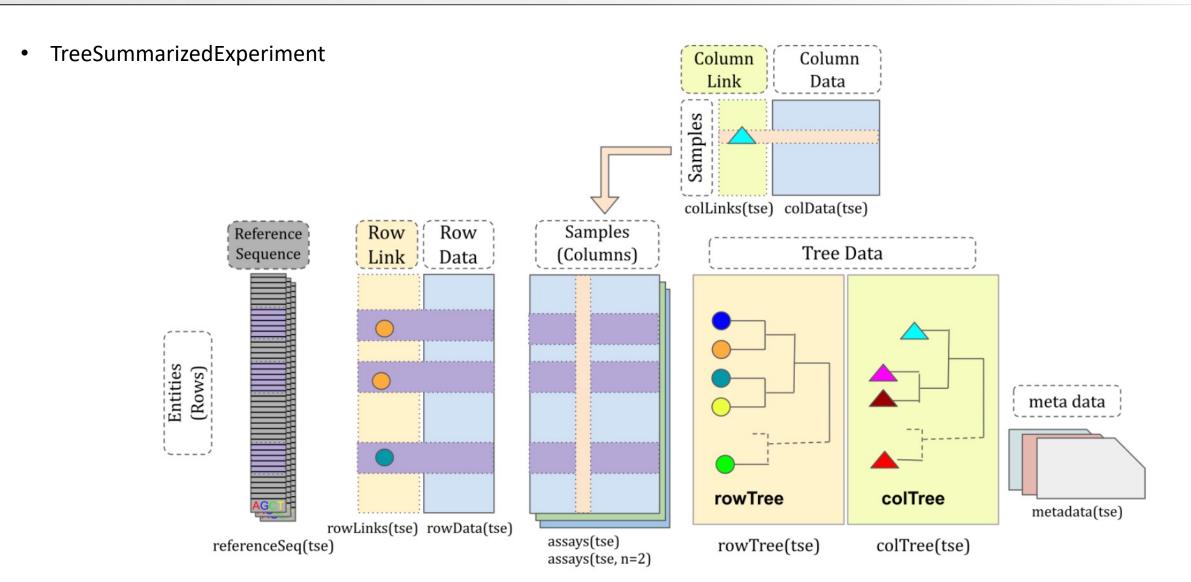

columns: refer to **colData**: samples, cells, etc.

Implements dim(), dimnames() and 2-dimensional [,]

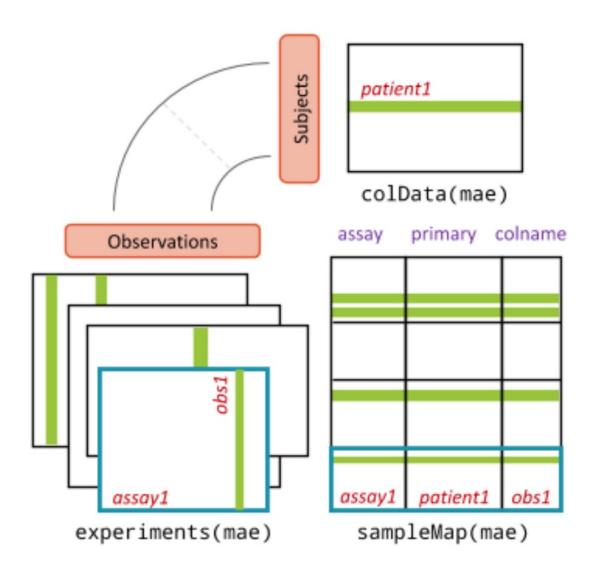
Can be several assays!!!



 metadata(): List of unstructured metadata describing the overall content of the object.


Classes derived from SummarizedExperiment

SingleCellExperiment


SingleCellExperiment

Classes derived from SummarizedExperiment

Classes derived from SummarizedExperiment

MultiAssayExperiment

BPPARAM

Genomic analyses require heavy resources

Generally, benefits from parallelization

BPPARAM

Genomic analyses require heavy resources

Generally, benefits from parallelization

BiocParallel is a Bioconductor package designed to <u>reduce the complexity</u> faced when developing and <u>using software that performs parallel computations</u>

BiocParallel aims to provide a <u>unified interface to existing parallel infrastructures</u> where <u>code can be easily executed in different environments</u>

Declaring configurations:

```
registered()
```

bpparam()

register(..., default = TRUE)

```
class: MulticoreParam
  bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportalobals: TRUE
  bplogdir: NA
  bpresultdir: NA
  cluster type: FORK
$SnowParam
class: SnowParam
  bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportglobals: TRUE
  bplogdir: NA
  bpresultdir: NA
  cluster type: SOCK
$SerialParam
class: SerialParam
  bpisup: FALSE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportglobals: TRUE
  bplogdir: NA
  bpresultdir: NA
 > BiocParallel::bpparam()
class: MulticoreParam
  bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportglobals: TRUE
  bplogdir: NA
  bpresultdir: NA
  cluster type: FORK
```

> BiocParallel::registered()

\$MulticoreParam

Declaring configurations:

```
registered()
```

bpparam()

register(..., default = TRUE)

MulticoreParam()

SerialParam()

SnowParam()

bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE bpexportalobals: TRUE bplogdir: NA bpresultdir: NA cluster type: FORK \$SnowParam class: SnowParam bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE bpexportglobals: TRUE bplogdir: NA bpresultdir: NA cluster type: SOCK \$SerialParam class: SerialParam bpisup: FALSE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE bpexportglobals: TRUE bplogdir: NA bpresultdir: NA > BiocParallel::bpparam() class: MulticoreParam bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE bpexportglobals: TRUE bplogdir: NA bpresultdir: NA cluster type: FORK

> BiocParallel::registered()

\$MulticoreParam

class: MulticoreParam

BPPARAM

Execute in parallel:

bplapply() e.g., bplapply(1:4, FUN)

```
> BiocParallel::registered()
$MulticoreParam
class: MulticoreParam
  bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportalobals: TRUE
  bplogdir: NA
  bpresultdir: NA
  cluster type: FORK
$SnowParam
class: SnowParam
  bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportalobals: TRUE
  bplogdir: NA
  bpresultdir: NA
  cluster type: SOCK
$SerialParam
class: SerialParam
  bpisup: FALSE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportglobals: TRUE
  bplogdir: NA
  bpresultdir: NA
 > BiocParallel::bpparam()
class: MulticoreParam
  bpisup: FALSE; bpnworkers: 6; bptasks: 0; bpjobname: BPJOB
  bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
  bpRNGseed: ; bptimeout: 2592000; bpprogressbar: FALSE
  bpexportglobals: TRUE
  bplogdir: NA
  bpresultdir: NA
  cluster type: FORK
```

Bioconductor is not only for analysis packages

https://www.bioconductor.org/packages/release/BiocViews.html

Software (1974) AssayDomain (791) BiologicalQuestion (822) Infrastructure (456) ResearchField (902) StatisticalMethod (727) Technology (1251) WorkflowStep (1081)

Bioconductor is not only for analysis packages

https://www.bioconductor.org/packages/release/BiocViews.html

• Software (1974)

- AssayDomain (791)
- BiologicalQuestion (822)
- Infrastructure (456)
- ResearchField (902)
- StatisticalMethod (727)
- Technology (1251)
- WorkflowStep (1081)

AnnotationData (971)

- ChipManufacturer (388)
- ChipName (196)
- CustomArray (2)
- CustomDBSchema (6)
- FunctionalAnnotation (31)
- Organism (634)
- PackageType (682)
- SequenceAnnotation (1)

• ExperimentData (398)

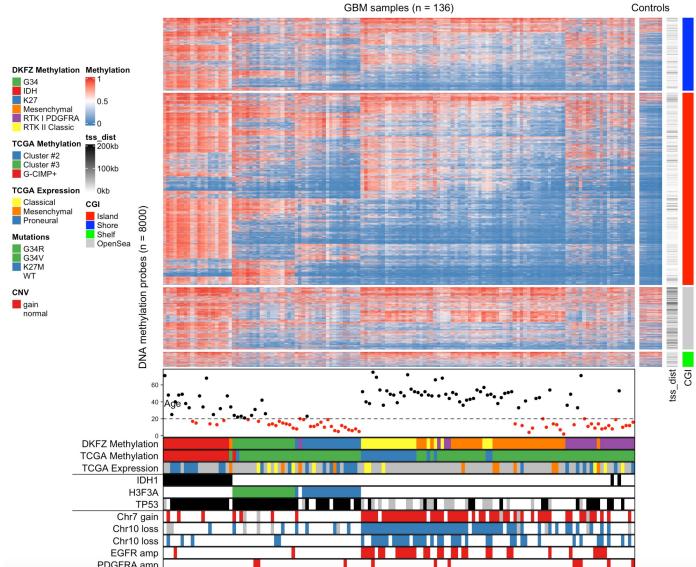
- AssayDomainData (81)
- <u>DiseaseModel (90)</u>
- OrganismData (139)
- PackageTypeData (41)
- RepositoryData (94)
- ReproducibleResearch (22)
- SpecimenSource (103)
- <u>TechnologyData (266)</u>

Workflow (28)

- AnnotationWorkflow (3)
- BasicWorkflow (5)
- EpigeneticsWorkflow (4)
- GeneExpressionWorkflow (11)
- GenomicVariantsWorkflow (2)
- ImmunoOncologyWorkflow (14)
- ProteomicsWorkflow (2)
- ResourceQueryingWorkflow (2)
- SingleCellWorkflow (2)

Visualization tools

Complex heatmaps reveal patterns and correlations in multidimensional genomic data •••


Zuguang Gu, Roland Eils, Matthias Schlesner

✓ Author Notes

Bioinformatics, Volume 32, Issue 18, 15 September 2016, Pages 2847–2849,

https://doi.org/10.1093/bioinformatics/btw313

Published: 20 May 2016 Article history ▼

NGS workflow management tools

■ AssayDomain (791) ■ BiologicalQuestion (822) ■ Infrastructure (456) ■ ResearchField (902) ■ StatisticalMethod (727) ■ Technology (1251) ■ WorkflowStep (1081)

systemPipeR

```
platforms all rank 148 / 1974 posts 0 in Bioc 6 years
build ok updated < 3 months dependencies 154
```

DOI: 10.18129/B9.bioc.systemPipeR

systemPipeR: NGS workflow and report generation environment

Bioconductor version: Release (3.12)

R package for building and running automated end-to-end analysis workflows for a wide range of next generation sequence (NGS) applications such as RNA-Seq, ChIP-Seq, VAR-Seq and Ribo-Seq. Important features include a uniform workflow interface across different NGS applications, automated report generation, and support for running both R and command-line software, such as NGS aligners or peak/variant callers, on local computers or compute clusters. Efficient handling of complex sample sets and experimental designs is facilitated by a consistently implemented sample annotation infrastructure. Instructions for using systemPipeR are given in the Overview Vignette (HTML). The remaining Vignettes, linked below, are workflow templates for common NGS use cases.

Reporting tools

▼ Software (1974)

- AssayDomain (791)
- ► BiologicalQuestion (822)
- ► Infrastructure (456)
- ResearchField (902)
- StatisticalMethod (727)
- ▶ Technology (1251)
- ► WorkflowStep (1081)

```
DESeq2Report::DESeq2Report(
          dds = dds,
          project = "OsmoResponse",
          intgroup = "timepoint"
)
```

Bioconductor is not only for analysis packages

https://www.bioconductor.org/packages/release/BiocViews.html

- ▶ Software (1974)
- AnnotationData (971)
- ExperimentData (398)
 - AssayDomainData (81)
 - ▶ DiseaseModel (90)
 - OrganismData (139)
 - PackageTypeData (41)
 - ▶ RepositoryData (94)
 - ReproducibleResearch (22)
 - ▶ SpecimenSource (103)
 - ► TechnologyData (266)
- ► Workflow (28)

Retrieving specific experiments

RangedSummarizedExperiment for time course RNA-Seq of fission yeast in response to stress, by Leong et al., Nat Commun 2014.

Bioconductor version: Release (3.12)

This package provides a RangedSummarizedExperiment object of read counts in genes for a time course RNA-Seq experiment of fission yeast (Schizosaccharomyces pombe) in response to oxidative stress (1M sorbitol treatment) at 0, 15, 30, 60, 120 and 180 mins. The samples are further divided between a wild-type group and a group with deletion of atf21. The read count matrix was prepared and provided by the author of the study: Leong HS, Dawson K, Wirth C, Li Y, Connolly Y, Smith DL, Wilkinson CR, Miller CJ. "A global non-coding RNA system modulates fission yeast protein levels in response to stress". Nat Commun 2014 May 23;5:3947. PMID: 24853205. GEO: GSE56761.

Author: Michael Love

Maintainer: Michael Love <michaelisaiahlove at gmail.com>

Citation (from within R, enter citation("fission")):

Leong, S. H, Dawson, K., Wirth, C., Li, Y., Connolly, Y., Smith, L. D, Wilkinson, R. C, Miller, J. C (2014). "A global non-coding RNA system modulates fission yeast protein levels in response to stress." *Nat Commun*, **5**, 3947. http://www.ncbi.nlm.nih.gov/pubmed/24853205.

```
> library(fission)
> fission
class: RangedSummarizedExperiment
dim: 7039 36
metadata(1): ''
assays(1): counts
rownames(7039): SPAC212.11 SPAC212.09c ... SPMITTRNAGLU.01 SPMIT.11
rowData names(2): symbol biotype
colnames(36): GSM1368273 GSM1368274 ... GSM1368307 GSM1368308
colData names(4): strain minute replicate id
> rowRanges(fission)
GRanges object with 7039 ranges and 2 metadata columns:
                                ranges strand |
                                                         symbol
                                                                       biotype
                  segnames
                     <Rle>
                             <IRanges> <Rle> |
                                                    <character>
                                                                       <factor>
       SPAC212.11
                                1-5662
                                                           tlh1 protein_coding
      SPAC212.09c
                             7619-9274
                                                    SPAC212.09c pseudogene
       SPNCRNA.70
                         I 11027-11556
                                                     SPNCRNA.70 ncRNA
       SPAC212.12
                         I 15855-16226
                                                     SPAC212.12 protein_coding
      SPAC212.04c
                         I 21381-23050
                                                    SPAC212.04c protein_coding
  SPMITTRNATYR.01
                        MT 17257-17342
                                             + | SPMITTRNATYR.01 tRNA
  SPMITTRNAILE.02
                        MT 17542-17613
                                            + | SPMITTRNAILE.02 tRNA
         SPMIT.10
                        MT 17806-18030
                                                           atp9 protein_coding
                                            + | SPMITTRNAGLU.01 tRNA
  SPMITTRNAGLU.01
                        MT 18404-18475
                                                           cox2 protein_coding
         SPMIT.11
                        MT 18561-19307
                                             + |
  seqinfo: 4 sequences from an unspecified genome; no seglenaths
```

Retrieving specific experiments

```
library(VariantAnnotation)
vcf <- readVcf(</pre>
          system.file("extdata", "SonVariantsChr21.vcf.gz", package = "AshkenazimSonChr21"),
          genome = "hg19"
info(vcf)
# A tibble: 94,527 x 35
        ΑF
                             OD BLOCKAVG_min30p... BaseQRankSum DS Dels
                                                                         END
                                                                                 FS HRun HaplotypeScore
   AC
                 AN
                                           <dbl> <lql> <dbl> <int> <dbl> <int>
   <I<l> <chr> <int> <int> <dbl> <lql>
                                                                                                  <dbl>
 1 <int... 0.50
                                                      -0.923 FALSE
                       38 8.25 FALSE
                                                                               0
                                                                                        0
                                                                                                  1.98
 2 <int... 0.50
                       37 19.5 FALSE
                                                      -0.334 FALSE
                                                                           NA 1.44
                                                                                       1
                                                                                                  1.00
 3 <int... 0.50
                       49 23.0 FALSE
                                                      -0.683 FALSE
                                                                           NA 11.8
                                                                                                  0.867
                                                                                        1
 4 <int... 0.50
                       62 20.0 FALSE
                                                      1.40 FALSE
                                                                           NA 1.00
                                                                                        0
                                                                                                  0
 5 <int... 0.50
                       57 10.8 FALSE
                                                      -1.44
                                                            FALSE
                                                                               0
                                                                                        0
                                                                                                  0
 6 <int... 0.50
                       56 10.8 FALSE
                                                      -1.46 FALSE
                                                                                                 12.0
 7 <int... 0.50
                       55 7.13 FALSE
                                                      -0.141 FALSE
                                                                                                 14.0
                                                                                        0
                                                      0.842 FALSE
 8 <int... 0.50
                       50 16.8 FALSE
                                                                               0
                                                                                        0
                                                                                                  0
 9 <int... 0.50
                       73 18.0 FALSE
                                                      0.456 FALSE
                                                                               9.32
                                                                                        2
                                                                                                  0.789
10 <int... 0.50
                  2
                       86 8.44 FALSE
                                                      -0.005 FALSE
                                                                      0
                                                                                        2
                                                                                                  5.86
                                                                               0
 ... with 94,517 more rows, and 22 more variables: InbreedingCoeff <dbl>, MQ <dbl>, MQ0 <int>, MQRankSum <dbl>,
    ReadPosRankSum <dbl>, SB <dbl>, VOSLOD <dbl>, culprit <chr>, set <chr>, CSOT <I<li>st>>, CSOR <I<li>st>>, AA <chr>>
   GMAF <I<li>st>>, EVS <I<li>st>>, cosmic <I<li>st>>, phastCons <Igl>>, Variant.type <I<li>st>>,
    Gene.name <I<list>>, Gene.component <I<list>>, phyloP <dbl>, SNP.Frequency <dbl>
```

Retrieving specific experiments

<pre>> scRNAseq::listDatasets()</pre>								
DataFrame with 46 rows and 5 columns								
	Reference	Taxonomy	Part	Number	Call			
	<character></character>	<integer></integer>	<character></character>	<integer></integer>	<character></character>			
1	@aztekin2019identifi	8355	tail	13199	AztekinTailData()			
2	@bach2017differentia	10090	mammary gland	25806	BachMammaryData()			
3	<pre>@baron2016singlecell</pre>	9606	pancreas	8569	BaronPancreasData('h			
4	<pre>@baron2016singlecell</pre>	10090	pancreas	1886	BaronPancreasData('m			
5	@buettner2015computa	10090	embryonic stem cells	288	<pre>BuettnerESCData()</pre>			
42	@wu2019advantages	10090	kidney	17542	WuKidneyData()			
43	@xin2016rna	9606	pancreas	1600	XinPancreasData()			
44	@zeisel2015brain	10090	brain	3005	ZeiselBrainData()			
45	@zilionis2019singlec	9606	lung	173954	ZilionisLungData()			
46	@zilionis2019singlec	10090	lung	17549	ZilionisLungData('mo			

```
> ZeiselBrainData()
snapshotDate(): 2020-10-02
see ?scRNAseq and browseVignettes('scRNAseq') for documentation
loading from cache
see ?scRNAseq and browseVignettes('scRNAseq') for documentation
loading from cache
see ?scRNAseq and browseVignettes('scRNAseq') for documentation
loading from cache
snapshotDate(): 2020-10-02
see ?scRNAseq and browseVignettes('scRNAseq') for documentation
loading from cache
class: SingleCellExperiment
dim: 20006 3005
metadata(0):
assays(1): counts
rownames(20006): Tspan12 Tshz1 ... mt-Rnr1 mt-Nd4l
rowData names(1): featureType
colnames(3005): 1772071015_C02 1772071017_G12 ... 1772066098_A12 1772058148_F03
colData names(10): tissue group # ... level1class level2class
reducedDimNames(0):
altExpNames(2): ERCC repeat
```

Bioconductor Annotation packages

	Package 🔷	Maintainer 🔷	Title
BS	BSgenome.Scerevisiae.UCSC.sacCer3	Bioconductor Package Maintainer	Saccharomyces cerevisiae (Yeast) full genome (UCSC version sacCer3)
BS	BSgenome.Scerevisiae.UCSC.sacCer2	Bioconductor Package Maintainer	Saccharomyces cerevisiae (Yeast) full genome (UCSC version sacCer2)
TxDb	TxDb.Scerevisiae.UCSC.sacCer3.sgdGene	Bioconductor Package Maintainer	Annotation package for TxDb object(s)
BS	BSgenome.Scerevisiae.UCSC.sacCer1	Bioconductor Package Maintainer	Saccharomyces cerevisiae (Yeast) full genome (UCSC version sacCer1)
	hom.Sc.inp.db	Bioconductor Package Maintainer	Homology information for Saccharomyces cerevisiae fror Inparanoid
	MeSH.Sce.S288c.eg.db	Koki Tsuyuzaki	Mapping table for Saccharomyces cerevisiae S288c Gene ID to MeSH
TxDb	TxDb.Scerevisiae.UCSC.sacCer2.sgdGene	Bioconductor Package Maintainer	Annotation package for TxDb object(s)
org	org.Sc.sgd.db	Bioconductor Package Maintainer	Genome wide annotation for Yeast

org packages

```
> library(org.Sc.sgd.db)
> org.Sc.sgd.db
OrgDb object:
 DBSCHEMAVERSION: 2.1
| Db type: OrgDb
| Supporting package: AnnotationDbi
 DBSCHEMA: YEAST_DB
 ORGANISM: Saccharomyces cerevisiae
 | SPECIES: Yeast
| YGSOURCENAME: Yeast Genome
 I YGSOURCEURL: http://sgd-archive.yeastgenome.org
 YGSOURCEDATE: 2019-0ct25
| CENTRALID: ORF
I TAXID: 559292
 KEGGSOURCENAME: KEGG GENOME
 KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes
| KEGGSOURCEDATE: 2011-Mar15
 | GOSOURCENAME: Gene Ontology
 GOSOURCEURL: http://current.geneontology.org/ontology/go-basic.obo
 GOSOURCEDATE: 2020-09-10
| EGSOURCEDATE: 2020-Sep23
 EGSOURCENAME: Entrez Gene
  EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
  ENSOURCEDATE: 2020-Aug18
 ENSOURCENAME: Ensembl
 ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta
 UPSOURCENAME: Uniprot
| UPSOURCEURL: http://www.UniProt.org/
```

BioC resources and access to public database

TxDb packages

A TxDb package connects a set of genomic coordinates to various transcript oriented features.

In other words, TxDb packages provide gene annotation models

TxDb packages

```
> TxDb.Scerevisiae.UCSC.sacCer3.sgdGene::TxDb.Scerevisiae.UCSC.sacCer3.sgdGene
TxDb object:
# Db type: TxDb
# Supporting package: GenomicFeatures
# Data source: UCSC
# Genome: sacCer3
# Organism: Saccharomyces cerevisiae
# Taxonomy ID: 4932
# UCSC Table: sgdGene
# Resource URL: http://genome.ucsc.edu/
# Type of Gene ID: Name of canonical transcript in cluster
# Full dataset: yes
# miRBase build ID: NA
# transcript_nrow: 6692
# exon_nrow: 7034
# cds_nrow: 7034
# Db created by: GenomicFeatures package from Bioconductor
# Creation time: 2015-10-07 18:20:42 +0000 (Wed, 07 Oct 2015)
# GenomicFeatures version at creation time: 1.21.30
# RSQLite version at creation time: 1.0.0
# DBSCHEMAVERSION: 1.1
```

TxDb packages

TxDb databases can be explored with AnnotationDbi functions

```
> AnnotationDbi::keys(TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, keytype = "GENEID") %>% glimpse
   chr [1:6534] "Q0010" "Q0032" "Q0055" "Q0075" "Q0080" "Q0085" "Q0092" "Q0120" "Q0130" "Q0140" "Q0142" "Q0143"
> AnnotationDbi::keys(TxDb.Scerevisiae.UCSC.sacCer3.sgdGene, keytype = "TXNAME") %>% glimpse
   chr [1:6692] "YAL069W" "YAL068W-A" "YAL067W-A" "YAL066W" "YAL064W-B" "YAL064W" "YAL062W" "YAL061W" "YAL060W"
```

BSgenome packages

Data packages that contain the full genome sequences of a given organism

> genome <- BSgenome.Scerevisiae.UCSC.sacCer3::BSgenome.Scerevisiae.UCSC.sacCer3</pre>

```
> genome
Yeast genome:
# organism: Saccharomyces cerevisiae (Yeast)
# genome: sacCer3
# provider: UCSC
# release date: April 2011
# 17 sequences:
                   chrIII chrIV
   chrI
           chrII
                                           chrVI
                                                   chrVII chrVIII chrIX
                                                                           chrX
                                                                                   chrXI
                                                                                           chrXII chrXIII chrXIV chrXV
                                                                                                                           chrXVI chrM
                                   chrV
# (use 'seqnames()' to see all the sequence names, use the '$' or '[[' operator to access a given sequence)
```

Biostrings package is used to interact with BSgenome databases

```
> genome <- BSgenome.Scerevisiae.UCSC.sacCer3::BSgenome.Scerevisiae.UCSC.sacCer3
> genome
Yeast genome:
# organism: Saccharomyces cerevisiae (Yeast)
# genome: sacCer3
# provider: UCSC
# release date: April 2011
# 17 sequences:
 chrI
   chrII
      chrIII chrIV
           chrV
             chrVI
               chrVII chrVIII chrIX
                       chrX
                         chrXI
                            chrXII chrXIII chrXIV chrXV
                                      chrXVI chrM
# (use 'segnames()' to see all the sequence names, use the '$' or '[[' operator to access a given sequence)
> Biostrings::getSeg(genome)
DNAStringSet object of length 17:
  width sea
                                    names
 [16]
  [17]
```

The AnnotationHub package provides a client interface to resources stored at the AnnotationHub web service

It is different from <u>AnnotationDbi-supported packages</u> (e.g. orgDb or TxDb packages), since it allows access to <u>files</u> on top of <u>databases</u>

The AnnotationHub package provides a client interface to resources stored at the AnnotationHub web service.

```
service.
> ah <- AnnotationHub::AnnotationHub()</pre>
snapshotDate(): 2020-10-27
> ah
AnnotationHub with 54989 records
# snapshotDate(): 2020-10-27
# $dataprovider: Ensembl, BroadInstitute, UCSC, ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/, Haemcode, FungiDB, Inparanoid8, TriTrypDB, Plasmo...
# $species: Homo sapiens, Mus musculus, Drosophila melanogaster, Bos taurus, Pan troglodytes, Rattus norvegicus, Danio rerio, Gallus gal...
# $rdataclass: GRanges, TwoBitFile, BigWigFile, EnsDb, Rle, OrgDb, ChainFile, TxDb, Inparanoid8Db, data.frame
# additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["AH5012"]]'
            title
 AH5012
            Chromosome Band
 AH5013
          | STS Markers
 AH5014
          | FISH Clones
           Recomb Rate
 AH5015
  AH5016
           ENCODE Pilot
 AH89321 | Ensembl 102 EnsDb for Xiphophorus couchianus
 AH89322 | Ensembl 102 EnsDb for Xiphophorus maculatus
 AH89323 | Ensembl 102 EnsDb for Xenopus tropicalis
 AH89324 | Ensembl 102 EnsDb for Zonotrichia albicollis
  AH89325 | Ensembl 102 EnsDb for Zalophus californianus
```

 Queries are done using query(ah, "keyword")

Queries are done using query(ah, page query(ah, c('sacCèr3', 'TwoBitFile'))

AnnotationHub with 1 record

```
> query(ah, c('sacCer3', 'TwoBitFile'))
AnnotationHub with 1 record
# snapshotDate(): 2020-10-27
# names(): AH14104
# $dataprovider: UCSC
# $species: Saccharomyces cerevisiae
# $rdataclass: TwoBitFile
# $rdatadteadded: 2014-12-15
# $title: sacCer3.2bit
# $description: UCSC 2 bit file for sacCer3
# $taxonomyid: 4932
# $genome: sacCer3
# $sourcetype: TwoBit
# $sourcetype: TwoBit
# $sourcetype: TwoBit
# $sourcesize: NA
# $tags: c("2bit", "UCSC", "genome")
# retrieve record with 'object[["AH14104"]]'
```

Queries are done using query(ah, page (ah, c('saccèr3', 'TwoBitFile'))

Objects are retrieved using ah[["

```
AnnotationHub with 1 record
snapshotDate(): 2020-10-27
names(): AH14104
$dataprovider: UCSC
# $species: Saccharomyces cerevisiae
$rdataclass: TwoBitFile
$rdatadateadded: 2014-12-15
$title: sacCer3.2bit
$description: UCSC 2 bit file for sacCer3
$taxonomyid: 4932
$genome: sacCer3
$sourcetype: TwoBit
$sourceurl: http://hgdownload.cse.ucsc.edu/goldenpath/sacCer3/bigZips/sacCer3.2bit
$sourcesize: NA
$tags: c("2bit", "UCSC", "genome")
retrieve record with 'object[["AH14104"]]'
twobit <- ah[['AH14104']]
loading from cache
twobit
TwoBitFile object
resource: /Users/jacquesserizay/Library/Caches/AnnotationHub/a6c5475f3d0f_18199
seqs <- getSeq(twobit)</pre>
DNAStringSet object of length 17:
   width sea
  chrI
  chrII
  chrIII
chrXIII
  784333 CCGGCTTTCTGACCGAAATTAAAAAAAAAAAATGAAAATGAAACCCTGTTCT..
                                 chrXIV
chrXVI
```

[17]

Many many resources available on AnnotationHub

```
> query(ah, 'VcfFile')
AnnotationHub with 8 records
# snapshotDate(): 2020-10-27
# $dataprovider: dbSNP
# $species: Homo sapiens
# $rdataclass: VcfFile
# additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["AH57956"]]'
            title
  AH57956 | clinvar_20160203.vcf.gz
  AH57957 | clinvar_20160203_papu.vcf.gz
  AH57958 | common_and_clinical_20160203.vcf.gz
  AH57959 | common_no_known_medical_impact_20160203.vcf.gz
  AH57960 | clinvar_20160203.vcf.gz
  AH57961 | clinvar_20160203_papu.vcf.gz
  AH57962 | common_and_clinical_20160203.vcf.gz
  AH57963 | common_no_known_medical_impact_20160203.vcf.gz
```

```
> query(ah, c('bigwig', 'UCSC') )
AnnotationHub with 2198 records
# snapshotDate(): 2020-10-27
# $dataprovider: UCSC
# $species: Homo sapiens, Drosophila melanogaster, Mus musculus
# $rdataclass: Rle, GRanges
# additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
#
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["AH23256"]]'
            title
  AH23256 I
            wgEncodeBroadHistoneGm12878H3k4me3StdPk.broadPeak.gz
  AH23257 I
            wgEncodeBroadHistoneGm12878H3k9acStdPk.broadPeak.gz
  AH23262 |
           wgEncodeBroadHistoneGm12878H3k36me3StdPk.broadPeak.gz
  AH23367 I
           wgEncodeBroadHistoneHuvecH3k27me3StdPk.broadPeak.gz
  AH24345 |
            wgEncodeCshlLongRnaSeqNhemfm2CellTotalGeneGencV10.gtf.gz
  . . .
  AH78698 I
            phastCons30way.UCSC.hq38.chrX.rds
  AH78699
            phastCons30way.UCSC.hg38.chrX_KI270880v1_alt.rds
  AH78700 I
            phastCons30way.UCSC.hg38.chrX_KI270881v1_alt.rds
  AH78701
            phastCons30way.UCSC.hg38.chrX_KI270913v1_alt.rds
            phastCons30way.UCSC.hg38.chrY.rds
  AH78702 |
```

```
> query(ah, c('TxDb', 'GENCODE'))
AnnotationHub with 20 records
# snapshotDate(): 2020-10-27
# $dataprovider: GENCODE
# $species: Homo sapiens
# $rdataclass: TxDb
# additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["AH75134"]]'
            title
  AH75134 | TxDb for Gencode v23 on hq19 coordinates
  AH75137 | TxDb for Gencode v23 on hg38 coordinates
  AH75140 | TxDb for Gencode v24 on hq19 coordinates
  AH75143 | TxDb for Gencode v24 on hg38 coordinates
  AH75146 | TxDb for Gencode v25 on hg19 coordinates
  AH75179 | TxDb for Gencode v30 on hg38 coordinates
  AH75182 | TxDb for Gencode v31 on hg19 coordinates
  AH75185 | TxDb for Gencode v31 on hq38 coordinates
  AH75188 | TxDb for Gencode v32 on hg19 coordinates
  AH75191 | TxDb for Gencode v32 on hq38 coordinates
```